
lxml

2014-09-10

Contents

Contents 2

I lxml 13

1 lxml 14
Introduction . 14
Documentation . 14
Download . 15
Mailing list . 16
Bug tracker . 16
License . 16
Old Versions . 16

2 Why lxml? 18
Motto . 18
Aims . 18

3 Installing lxml 20
Requirements . 20
Installation . 20
Building lxml from sources . 21
Using lxml with python-libxml2 . 21
MS Windows . 21
MacOS-X . 22

4 Benchmarks and Speed 23
General notes . 23
How to read the timings . 24
Parsing and Serialising . 24
The ElementTree API . 27

Child access . 28
Element creation . 28
Merging different sources . 29
deepcopy . 29
Tree traversal . 30

XPath . 30
A longer example . 31
lxml.objectify . 33

ObjectPath . 33
Caching Elements . 34
Further optimisations . 34

5 ElementTree compatibility of lxml.etree 36

2

CONTENTS CONTENTS

6 lxml FAQ - Frequently Asked Questions 39
General Questions . 39

Is there a tutorial? . 39
Where can I find more documentation about lxml? . 39
What standards does lxml implement? . 39
Who uses lxml? . 40
What is the difference between lxml.etree and lxml.objectify? 41
How can I make my application run faster? . 41
What about that trailing text on serialised Elements? . 42
How can I find out if an Element is a comment or PI? . 42
How can I map an XML tree into a dict of dicts? . 42
Why does lxml sometimes return ’str’ values for text in Python 2? 43

Installation . 43
Which version of libxml2 and libxslt should I use or require? . 43
Where are the binary builds? . 43
Why do I get errors about missing UCS4 symbols when installing lxml? 43

Contributing . 44
Why is lxml not written in Python? . 44
How can I contribute? . 44

Bugs . 45
My application crashes! . 45
My application crashes on MacOS-X! . 45
I think I have found a bug in lxml. What should I do? . 45
How do I know a bug is really in lxml and not in libxml2? . 46

Threading . 46
Can I use threads to concurrently access the lxml API? . 46
Does my program run faster if I use threads? . 47
Would my single-threaded program run faster if I turned off threading? 47
Why can’t I reuse XSLT stylesheets in other threads? . 47
My program crashes when run with mod_python/Pyro/Zope/Plone/... 47

Parsing and Serialisation . 49
Why doesn’t the pretty_print option reformat my XML output? 49
Why can’t lxml parse my XML from unicode strings? . 49
Can lxml parse from file objects opened in unicode/text mode? 50
What is the difference between str(xslt(doc)) and xslt(doc).write() ? 50
Why can’t I just delete parents or clear the root node in iterparse()? 50
How do I output null characters in XML text? . 50
Is lxml vulnerable to XML bombs? . 51
How do I use lxml safely as a web-service endpoint? . 51

XPath and Document Traversal . 52
What are the findall() and xpath() methods on Element(Tree)? 52
Why doesn’t findall() support full XPath expressions? . 52
How can I find out which namespace prefixes are used in a document? 52
How can I specify a default namespace for XPath expressions? 52

II Developing with lxml 53

7 The lxml.etree Tutorial 54
The Element class . 55

Elements are lists . 55
Elements carry attributes as a dict . 57
Elements contain text . 58
Using XPath to find text . 59
Tree iteration . 60
Serialisation . 61

3

CONTENTS CONTENTS

The ElementTree class . 63
Parsing from strings and files . 63

The fromstring() function . 64
The XML() function . 64
The parse() function . 64
Parser objects . 65
Incremental parsing . 65
Event-driven parsing . 66

Namespaces . 68
The E-factory . 71
ElementPath . 72

8 APIs specific to lxml.etree 74
lxml.etree . 74
Other Element APIs . 74
Trees and Documents . 75
Iteration . 76
Error handling on exceptions . 77
Error logging . 78
Serialisation . 78
Incremental XML generation . 79
CDATA . 81
XInclude and ElementInclude . 81
write_c14n on ElementTree . 82

9 Parsing XML and HTML with lxml 83
Parsers . 83

Parser options . 84
Error log . 85
Parsing HTML . 85
Doctype information . 86

The target parser interface . 87
The feed parser interface . 89
Incremental event parsing . 90

Event types . 90
Modifying the tree . 91
Selective tag events . 92
Comments and PIs . 93
Events with custom targets . 93

iterparse and iterwalk . 95
iterwalk . 95

Python unicode strings . 96
Serialising to Unicode strings . 96

10 Validation with lxml 98
Validation at parse time . 98
DTD . 99
RelaxNG . 101
XMLSchema . 102
Schematron . 103
(Pre-ISO-Schematron) . 106

11 XPath and XSLT with lxml 108
XPath . 108

The xpath() method . 108
Namespaces and prefixes . 109

4

CONTENTS CONTENTS

XPath return values . 110
Generating XPath expressions . 111
The XPath class . 111
Regular expressions in XPath . 111
The XPathEvaluator classes . 112
ETXPath . 112
Error handling . 113

XSLT . 113
XSLT result objects . 114
Stylesheet parameters . 115
Errors and messages . 116
The xslt() tree method . 117
Dealing with stylesheet complexity . 117
Profiling . 117

12 lxml.objectify 118
The lxml.objectify API . 118

Element access through object attributes . 118
Creating objectify trees . 121
Tree generation with the E-factory . 121
Namespace handling . 122

Asserting a Schema . 123
ObjectPath . 124
Python data types . 127

Recursive tree dump . 128
Recursive string representation of elements . 129

How data types are matched . 130
Type annotations . 131
XML Schema datatype annotation . 131
The DataElement factory . 133
Defining additional data classes . 135
Advanced element class lookup . 137

What is different from lxml.etree? . 137

13 lxml.html 139
Parsing HTML . 139

Parsing HTML fragments . 139
Really broken pages . 139

HTML Element Methods . 140
Running HTML doctests . 140
Creating HTML with the E-factory . 141

Viewing your HTML . 142
Working with links . 142

Functions . 142
Forms . 143

Form Filling Example . 144
Form Submission . 144

Cleaning up HTML . 145
autolink . 147
wordwrap . 147

HTML Diff . 147
Examples . 148

Microformat Example . 148

14 lxml.cssselect 150
The CSSSelector class . 150

5

CONTENTS CONTENTS

The cssselect method . 151
Supported Selectors . 151
Namespaces . 151

15 BeautifulSoup Parser 152
Parsing with the soupparser . 152
Entity handling . 153
Using soupparser as a fallback . 154
Using only the encoding detection . 154

16 html5lib Parser 155
Differences to regular HTML parsing . 155
Function Reference . 155

III Extending lxml 157

17 Document loading and URL resolving 158
XML Catalogs . 158
URI Resolvers . 158
Document loading in context . 159
I/O access control in XSLT . 161

18 Python extensions for XPath and XSLT 163
XPath Extension functions . 163

The FunctionNamespace . 163
Global prefix assignment . 164
The XPath context . 164
Evaluators and XSLT . 165
Evaluator-local extensions . 166
What to return from a function . 167

XSLT extension elements . 169
Declaring extension elements . 169
Applying XSL templates . 170
Working with read-only elements . 171

19 Using custom Element classes in lxml 172
Background on Element proxies . 172
Element initialization . 172
Setting up a class lookup scheme . 173

Default class lookup . 174
Namespace class lookup . 175
Attribute based lookup . 175
Custom element class lookup . 176
Tree based element class lookup in Python . 176

Generating XML with custom classes . 177
Implementing namespaces . 177

20 Sax support 180
Building a tree from SAX events . 180
Producing SAX events from an ElementTree or Element . 180
Interfacing with pulldom/minidom . 181

21 The public C-API of lxml.etree 182
Writing external modules in Cython . 182
Writing external modules in C . 183

6

CONTENTS CONTENTS

IV Developing lxml 184

22 How to build lxml from source 185
Cython . 185
Github, git and hg . 185
Building the sources . 186
Running the tests and reporting errors . 186
Building an egg or wheel . 187
Building lxml on MacOS-X . 187
Static linking on Windows . 188
Building Debian packages from SVN sources . 189

23 How to read the source of lxml 190
What is Cython? . 190
Where to start? . 190

Concepts . 191
The documentation . 191

lxml.etree . 191
Python modules . 193
lxml.objectify . 193
lxml.html . 193

24 Credits 194
Main contributors . 194
Special thanks goes to: . 195

A Changes 196
3.4.0 (2014-09-10) . 196
3.3.6 (2014-08-28) . 197
3.3.5 (2014-04-18) . 197
3.3.4 (2014-04-03) . 197
3.3.3 (2014-03-04) . 197
3.3.2 (2014-02-26) . 198
3.3.1 (2014-02-12) . 198
3.3.0 (2014-01-26) . 198
3.3.0beta5 (2014-01-18) . 199
3.3.0beta4 (2014-01-12) . 199
3.3.0beta3 (2014-01-02) . 200
3.3.0beta2 (2013-12-20) . 200
3.3.0beta1 (2013-12-12) . 200
3.2.5 (2014-01-02) . 201
3.2.4 (2013-11-07) . 201
3.2.3 (2013-07-28) . 202
3.2.2 (2013-07-28) . 202
3.2.1 (2013-05-11) . 202
3.2.0 (2013-04-28) . 203
3.1.2 (2013-04-12) . 203
3.1.1 (2013-03-29) . 204
3.1.0 (2013-02-10) . 204
3.1beta1 (2012-12-21) . 204
3.0.2 (2012-12-14) . 205
3.0.1 (2012-10-14) . 205
3.0 (2012-10-08) . 206
3.0beta1 (2012-09-26) . 206
3.0alpha2 (2012-08-23) . 206
3.0alpha1 (2012-07-31) . 207

7

CONTENTS CONTENTS

2.3.6 (2012-09-28) . 208
2.3.5 (2012-07-31) . 208
2.3.4 (2012-03-26) . 209
2.3.3 (2012-01-04) . 209
2.3.2 (2011-11-11) . 209
2.3.1 (2011-09-25) . 210
2.3 (2011-02-06) . 211
2.3beta1 (2010-09-06) . 211
2.3alpha2 (2010-07-24) . 212
2.3alpha1 (2010-06-19) . 212
2.2.8 (2010-09-02) . 214
2.2.7 (2010-07-24) . 214
2.2.6 (2010-03-02) . 214
2.2.5 (2010-02-28) . 214
2.2.4 (2009-11-11) . 215
2.2.3 (2009-10-30) . 215
2.2.2 (2009-06-21) . 216
2.2.1 (2009-06-02) . 216
2.2 (2009-03-21) . 216
2.2beta4 (2009-02-27) . 217
2.2beta3 (2009-02-17) . 217
2.2beta2 (2009-01-25) . 218
2.1.5 (2009-01-06) . 218
2.2beta1 (2008-12-12) . 218
2.1.4 (2008-12-12) . 219
2.0.11 (2008-12-12) . 219
2.2alpha1 (2008-11-23) . 219
2.1.3 (2008-11-17) . 219
2.0.10 (2008-11-17) . 220
2.1.2 (2008-09-05) . 220
2.0.9 (2008-09-05) . 220
2.1.1 (2008-07-24) . 221
2.0.8 (2008-07-24) . 221
2.1 (2008-07-09) . 221
2.0.7 (2008-06-20) . 222
2.1beta3 (2008-06-19) . 222
2.0.6 (2008-05-31) . 223
2.1beta2 (2008-05-02) . 224
2.0.5 (2008-05-01) . 224
2.1beta1 (2008-04-15) . 224
2.0.4 (2008-04-13) . 225
2.1alpha1 (2008-03-27) . 225
2.0.3 (2008-03-26) . 226
2.0.2 (2008-02-22) . 227
2.0.1 (2008-02-13) . 227
2.0 (2008-02-01) . 228
1.3.6 (2007-10-29) . 232
1.3.5 (2007-10-22) . 232
1.3.4 (2007-08-30) . 232
1.3.3 (2007-07-26) . 233
1.3.2 (2007-07-03) . 233
1.3.1 (2007-07-02) . 234
1.3 (2007-06-24) . 234
1.2.1 (2007-02-27) . 235
1.2 (2007-02-20) . 236
1.1.2 (2006-10-30) . 236

8

CONTENTS CONTENTS

1.1.1 (2006-09-21) . 237
1.1 (2006-09-13) . 237
1.0.4 (2006-09-09) . 239
1.0.3 (2006-08-08) . 239
1.0.2 (2006-06-27) . 240
1.0.1 (2006-06-09) . 240
1.0 (2006-06-01) . 241
0.9.2 (2006-05-10) . 243
0.9.1 (2006-03-30) . 243
0.9 (2006-03-20) . 244
0.8 (2005-11-03) . 244
0.7 (2005-06-15) . 245
0.6 (2005-05-14) . 246
0.5.1 (2005-04-09) . 246
0.5 (2005-04-08) . 246

B Generated API documentation 247
Package lxml . 248

Modules . 248
Functions . 248
Variables . 249

Module lxml.ElementInclude . 250
Functions . 250
Variables . 250
Class FatalIncludeError . 250

Module lxml.builder . 252
Functions . 252
Variables . 252
Class str . 252
Class str . 262
Class ElementMaker . 272

Module lxml.cssselect . 276
Class SelectorSyntaxError . 276
Class ExpressionError . 277
Class SelectorError . 278
Class CSSSelector . 279

Module lxml.doctestcompare . 281
Functions . 281
Variables . 282
Class LXMLOutputChecker . 282
Class LHTMLOutputChecker . 283

Module lxml.etree . 285
Functions . 285
Variables . 294
Class AttributeBasedElementClassLookup . 295
Class C14NError . 296
Class CDATA . 297
Class CommentBase . 298
Class CustomElementClassLookup . 299
Class DTD . 300
Class DTDError . 302
Class DTDParseError . 303
Class DTDValidateError . 304
Class DocumentInvalid . 305
Class ETCompatXMLParser . 306
Class ETXPath . 308

9

CONTENTS CONTENTS

Class ElementBase . 309
Class ElementClassLookup . 310
Class ElementDefaultClassLookup . 311
Class ElementNamespaceClassLookup . 312
Class EntityBase . 313
Class Error . 314
Class ErrorDomains . 315
Class ErrorLevels . 317
Class ErrorTypes . 317
Class FallbackElementClassLookup . 346
Class HTMLParser . 347
Class LxmlError . 349
Class LxmlRegistryError . 350
Class LxmlSyntaxError . 351
Class NamespaceRegistryError . 353
Class PIBase . 354
Class ParseError . 356
Class ParserBasedElementClassLookup . 357
Class ParserError . 358
Class PyErrorLog . 359
Class PythonElementClassLookup . 361
Class QName . 362
Class RelaxNG . 364
Class RelaxNGError . 365
Class RelaxNGErrorTypes . 366
Class RelaxNGParseError . 369
Class RelaxNGValidateError . 370
Class Resolver . 371
Class Schematron . 372
Class SchematronError . 375
Class SchematronParseError . 376
Class SchematronValidateError . 377
Class SerialisationError . 378
Class TreeBuilder . 379
Class XInclude . 380
Class XIncludeError . 381
Class XMLParser . 382
Class XMLSchema . 385
Class XMLSchemaError . 386
Class XMLSchemaParseError . 387
Class XMLSchemaValidateError . 388
Class XMLSyntaxError . 389
Class ETCompatXMLParser . 390
Class XPath . 392
Class XPathDocumentEvaluator . 393
Class XPathError . 394
Class XPathEvalError . 396
Class XPathFunctionError . 397
Class XPathResultError . 398
Class XPathSyntaxError . 400
Class XSLT . 401
Class XSLTAccessControl . 404
Class XSLTApplyError . 405
Class XSLTError . 406
Class XSLTExtension . 407
Class XSLTExtensionError . 409

10

CONTENTS CONTENTS

Class XSLTParseError . 410
Class XSLTSaveError . 412
Class iterparse . 413
Class iterwalk . 415

Package lxml.html . 417
Modules . 417
Functions . 417
Variables . 421

Module lxml.html.ElementSoup . 422
Functions . 422

Module lxml.html.builder . 423
Functions . 423
Variables . 423

Module lxml.html.clean . 426
Functions . 426
Variables . 427
Class Cleaner . 427

Module lxml.html.defs . 430
Variables . 430

Module lxml.html.diff . 432
Functions . 432

Module lxml.html.formfill . 433
Functions . 433
Class FormNotFound . 433
Class DefaultErrorCreator . 434

Module lxml.html.html5parser . 435
Functions . 435
Variables . 436
Class HTMLParser . 436
Class XHTMLParser . 437

Module lxml.html.soupparser . 438
Functions . 438

Module lxml.html.usedoctest . 439
Package lxml.includes . 440

Variables . 440
Package lxml.isoschematron . 441

Functions . 441
Variables . 441
Class Schematron . 442

Module lxml.objectify . 445
Functions . 445
Variables . 450
Class BoolElement . 451
Class ElementMaker . 453
Class FloatElement . 455
Class IntElement . 456
Class LongElement . 458
Class NoneElement . 459
Class NumberElement . 462
Class ObjectPath . 468
Class ObjectifiedDataElement . 469
Class ObjectifiedElement . 471
Class ObjectifyElementClassLookup . 474
Class PyType . 475
Class StringElement . 477

Module lxml.pyclasslookup . 481

11

CONTENTS CONTENTS

Variables . 481
Module lxml.sax . 482

Functions . 482
Variables . 482
Class SaxError . 482
Class ElementTreeContentHandler . 483
Class ElementTreeProducer . 487

Module lxml.usedoctest . 489

12

Part I

lxml

13

Chapter 1

lxml

» lxml takes all the pain out of XML. «
Stephan Richter

lxml is the most feature-rich and easy-to-use library for processing XML and HTML in the Python language.

Introduction

The lxml XML toolkit is a Pythonic binding for the C libraries libxml2 and libxslt. It is unique in that it combines
the speed and XML feature completeness of these libraries with the simplicity of a native Python API, mostly
compatible but superior to the well-known ElementTree API. The latest release works with all CPython versions
from 2.6 to 3.4. See the introduction for more information about background and goals of the lxml project. Some
common questions are answered in the FAQ.

Documentation

The complete lxml documentation is available for download as PDF documentation. The HTML documentation
from this web site is part of the normal source download.

∙ Tutorials:

– the lxml.etree tutorial for XML processing

– John Shipman’s tutorial on Python XML processing with lxml

– Fredrik Lundh’s tutorial for ElementTree

∙ ElementTree:

– ElementTree API

– compatibility and differences of lxml.etree

– ElementTree performance characteristics and comparison

∙ lxml.etree:

14

http://thread.gmane.org/gmane.comp.python.lxml.devel/3252/focus=3258
http://xmlsoft.org/
http://xmlsoft.org/XSLT/
http://effbot.org/zone/element-index.htm
http://codespeak.net/lxml/lxmldoc-3.4.0.pdf
http://www.nmt.edu/tcc/help/pubs/pylxml/
http://effbot.org/zone/element.htm
http://effbot.org/zone/element-index.htm#documentation

Download

– lxml.etree specific API documentation

– the generated API documentation as a reference

– parsing and validating XML

– XPath and XSLT support

– Python XPath extension functions for XPath and XSLT

– custom XML element classes for custom XML APIs (see EuroPython 2008 talk)

– a SAX compliant API for interfacing with other XML tools

– a C-level API for interfacing with external C/Cython modules

∙ lxml.objectify:

– lxml.objectify API documentation

– a brief comparison of objectify and etree

lxml.etree follows the ElementTree API as much as possible, building it on top of the native libxml2 tree. If
you are new to ElementTree, start with the lxml.etree tutorial for XML processing. See also the ElementTree
compatibility overview and the ElementTree performance page comparing lxml to the original ElementTree and
cElementTree implementations.

Right after the lxml.etree tutorial for XML processing and the ElementTree documentation, the next place to
look is the lxml.etree specific API documentation. It describes how lxml extends the ElementTree API to expose
libxml2 and libxslt specific XML functionality, such as XPath, Relax NG, XML Schema, XSLT, and c14n. Python
code can be called from XPath expressions and XSLT stylesheets through the use of XPath extension functions.
lxml also offers a SAX compliant API, that works with the SAX support in the standard library.

There is a separate module lxml.objectify that implements a data-binding API on top of lxml.etree. See the
objectify and etree FAQ entry for a comparison.

In addition to the ElementTree API, lxml also features a sophisticated API for custom XML element classes. This
is a simple way to write arbitrary XML driven APIs on top of lxml. lxml.etree also has a C-level API that can be
used to efficiently extend lxml.etree in external C modules, including fast custom element class support.

Download

The best way to download lxml is to visit lxml at the Python Package Index (PyPI). It has the source that compiles
on various platforms. The source distribution is signed with this key.

The latest version is lxml 3.4.0, released 2014-09-10 (changes for 3.4.0). Older versions are listed below.

Please take a look at the installation instructions !

This complete web site (including the generated API documentation) is part of the source distribution, so if you
want to download the documentation for offline use, take the source archive and copy the doc/html directory
out of the source tree, or use the PDF documentation.

The latest installable developer sources should usually be available from the build server. It’s also possible to
check out the latest development version of lxml from github directly, using a command like this (assuming you
use hg and have hg-git installed):

hg clone git://github.com/lxml/lxml.git lxml

15

api/index.html
s5/lxml-ep2008.html
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/celementtree.htm
http://effbot.org/zone/element-index.htm
http://www.w3.org/TR/xpath/
http://www.relaxng.org/
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xml-c14n
http://pypi.python.org/pypi/lxml/
http://codespeak.net/lxml/pubkey.asc
/files/lxml-3.4.0.tgz
/changes-3.4.0.html
http://codespeak.net/lxml/lxmldoc-3.4.0.pdf
http://lxml.de/build/

Old Versions

Alternatively, if you use git, this should work as well:

git clone git://github.com/lxml/lxml.git lxml

You can browse the source repository and its history through the web. Please read how to build lxml from source
first. The latest CHANGES of the developer version are also accessible. You can check there if a bug you found
has been fixed or a feature you want has been implemented in the latest trunk version.

Mailing list

Questions? Suggestions? Code to contribute? We have a mailing list.

You can search the archive with Gmane or Google.

Bug tracker

lxml uses the launchpad bug tracker. If you are sure you found a bug in lxml, please file a bug report there. If you
are not sure whether some unexpected behaviour of lxml is a bug or not, please check the documentation and ask
on the mailing list first. Do not forget to search the archive (e.g. with Gmane)!

License

The lxml library is shipped under a BSD license. libxml2 and libxslt2 itself are shipped under the MIT license.
There should therefore be no obstacle to using lxml in your codebase.

Old Versions

See the web sites of lxml 1.3, 2.0, 2.1, 2.2 2.3 3.0 3.1 3.2 3.3 and the latest in-development version.

∙ lxml 3.4.0, released 2014-09-10 (changes for 3.4.0)

∙ lxml 3.4.0beta1, released 2014-09-05 (changes for 3.4.0beta1)

∙ lxml 3.3.6, released 2014-08-28 (changes for 3.3.6)

∙ lxml 3.3.5, released 2014-04-18 (changes for 3.3.5)

∙ lxml 3.3.4, released 2014-04-03 (changes for 3.3.4)

∙ lxml 3.3.3, released 2014-03-04 (changes for 3.3.3)

∙ lxml 3.3.2, released 2014-02-26 (changes for 3.3.2)

∙ lxml 3.3.1, released 2014-02-12 (changes for 3.3.1)

∙ lxml 3.3.0, released 2014-01-26 (changes for 3.3.0)

∙ lxml 3.3.0beta5, released 2014-01-18 (changes for 3.3.0beta5)

∙ lxml 3.3.0beta4, released 2014-01-12 (changes for 3.3.0beta4)

∙ lxml 3.3.0beta3, released 2014-01-02 (changes for 3.3.0beta3)

16

https://github.com/lxml/lxml/
https://github.com/lxml/lxml/blob/master/CHANGES.txt
http://lxml.de/mailinglist/
http://blog.gmane.org/gmane.comp.python.lxml.devel
http://www.google.com/webhp?q=site:comments.gmane.org%2Fgmane.comp.python.lxml.devel+
https://launchpad.net/lxml/
http://lxml.de/mailinglist/
http://blog.gmane.org/gmane.comp.python.lxml.devel
https://github.com/lxml/lxml/blob/master/doc/licenses/BSD.txt
http://www.opensource.org/licenses/mit-license.html
http://lxml.de/1.3/
http://lxml.de/2.0/
http://lxml.de/2.1/
http://lxml.de/2.2/
http://lxml.de/2.3/
http://lxml.de/3.0/
http://lxml.de/3.1/
http://lxml.de/3.2/
http://lxml.de/3.3/
http://lxml.de/dev/
/files/lxml-3.4.0.tgz
/changes-3.4.0.html
/files/lxml-3.4.0beta1.tgz
/changes-3.4.0beta1.html
/files/lxml-3.3.6.tgz
/changes-3.3.6.html
/files/lxml-3.3.5.tgz
/changes-3.3.5.html
/files/lxml-3.3.4.tgz
/changes-3.3.4.html
/files/lxml-3.3.3.tgz
/changes-3.3.3.html
/files/lxml-3.3.2.tgz
/changes-3.3.2.html
/files/lxml-3.3.1.tgz
/changes-3.3.1.html
/files/lxml-3.3.0.tgz
/changes-3.3.0.html
/files/lxml-3.3.0beta5.tgz
/changes-3.3.0beta5.html
/files/lxml-3.3.0beta4.tgz
/changes-3.3.0beta4.html
/files/lxml-3.3.0beta3.tgz
/changes-3.3.0beta3.html

Old Versions

∙ lxml 3.3.0beta2, released 2013-12-20 (changes for 3.3.0beta2)

∙ lxml 3.3.0beta1, released 2013-12-12 (changes for 3.3.0beta1)

∙ lxml 3.2.4, released 2013-11-07 (changes for 3.2.4)

∙ lxml 3.2.3, released 2013-07-28 (changes for 3.2.3)

∙ lxml 3.2.2, released 2013-07-28 (changes for 3.2.2)

∙ lxml 3.2.1, released 2013-05-11 (changes for 3.2.1)

∙ lxml 3.2.0, released 2013-04-28 (changes for 3.2.0)

∙ lxml 3.1.2, released 2013-04-12 (changes for 3.1.2)

∙ lxml 3.1.1, released 2013-03-29 (changes for 3.1.1)

∙ lxml 3.1.0, released 2013-02-10 (changes for 3.1.0)

∙ lxml 3.1beta1, released 2012-12-21 (changes for 3.1beta1)

∙ lxml 3.0.2, released 2012-12-14 (changes for 3.0.2)

∙ lxml 3.0.1, released 2012-10-14 (changes for 3.0.1)

∙ lxml 3.0, released 2012-10-08 (changes for 3.0)

∙ older releases

17

/files/lxml-3.3.0beta2.tgz
/changes-3.3.0beta2.html
/files/lxml-3.3.0beta1.tgz
/changes-3.3.0beta1.html
/files/lxml-3.2.4.tgz
/changes-3.2.4.html
/files/lxml-3.2.3.tgz
/changes-3.2.3.html
/files/lxml-3.2.2.tgz
/changes-3.2.2.html
/files/lxml-3.2.1.tgz
/changes-3.2.1.html
/files/lxml-3.2.0.tgz
/changes-3.2.0.html
/files/lxml-3.1.2.tgz
/changes-3.1.2.html
/files/lxml-3.1.1.tgz
/changes-3.1.1.html
/files/lxml-3.1.0.tgz
/changes-3.1.0.html
/files/lxml-3.1beta1.tgz
/changes-3.1beta1.html
/files/lxml-3.0.2.tgz
/changes-3.0.2.html
/files/lxml-3.0.1.tgz
/changes-3.0.1.html
/files/lxml-3.0.tgz
/changes-3.0.html
http://lxml.de/3.0/#old-versions

Chapter 2

Why lxml?

Motto

“the thrills without the strangeness”

To explain the motto:

“Programming with libxml2 is like the thrilling embrace of an exotic stranger. It seems to have the potential to
fulfill your wildest dreams, but there’s a nagging voice somewhere in your head warning you that you’re about to
get screwed in the worst way.” (a quote by Mark Pilgrim)

Mark Pilgrim was describing in particular the experience a Python programmer has when dealing with libxml2.
The default Python bindings of libxml2 are fast, thrilling, powerful, and your code might fail in some horrible way
that you really shouldn’t have to worry about when writing Python code. lxml combines the power of libxml2
with the ease of use of Python.

Aims

The C libraries libxml2 and libxslt have huge benefits:

∙ Standards-compliant XML support.

∙ Support for (broken) HTML.

∙ Full-featured.

∙ Actively maintained by XML experts.

∙ fast. fast! FAST!

These libraries already ship with Python bindings, but these Python bindings mimic the C-level interface. This
yields a number of problems:

∙ very low level and C-ish (not Pythonic).

∙ underdocumented and huge, you get lost in them.

∙ UTF-8 in API, instead of Python unicode strings.

∙ Can easily cause segfaults from Python.

18

http://diveintomark.org/archives/2004/02/18/libxml2
http://www.xmlsoft.org
http://xmlsoft.org/XSLT

Aims

∙ Require manual memory management!

lxml is a new Python binding for libxml2 and libxslt, completely independent from these existing Python bindings.
Its aims:

∙ Pythonic API.

∙ Documented.

∙ Use Python unicode strings in API.

∙ Safe (no segfaults).

∙ No manual memory management!

lxml aims to provide a Pythonic API by following as much as possible the ElementTree API. We’re trying to avoid
inventing too many new APIs, or you having to learn new things -- XML is complicated enough.

19

http://effbot.org/zone/element-index.htm

Chapter 3

Installing lxml

For special installation instructions regarding MS Windows and MacOS-X, see the specific sections below.

Requirements

You need Python 2.6 or later.

Unless you are using a static binary distribution (e.g. from a Windows binary installer), you need to install libxml2
and libxslt, in particular:

∙ libxml2 2.7.0 or later. It can be found here: http://xmlsoft.org/downloads.html

– We recommend libxml2 2.9.0 or a later version.

– If you want to use the feed parser interface, especially when parsing from unicode strings, do not use
libxml2 2.7.4 through 2.7.6.

∙ libxslt 1.1.23 or later. It can be found here: http://xmlsoft.org/XSLT/downloads.html

– We recommend libxslt 1.1.26 or later. Version 1.1.25 will not work due to a missing library symbol.

Newer versions generally contain fewer bugs and are therefore recommended. XML Schema support is also still
worked on in libxml2, so newer versions will give you better compliance with the W3C spec.

To install the required development packages of these dependencies on Linux systems, use your distribution
specific installation tool, e.g. apt-get on Debian/Ubuntu:

sudo apt-get install libxml2-dev libxslt-dev python-dev

Installation

The best way to install lxml is to get the pip package management tool and run the following as super-user (or
administrator):

pip install lxml

To install a specific version, either download the distribution manually and let pip install that, or pass the desired
version to pip:

20

http://xmlsoft.org/downloads.html
http://xmlsoft.org/XSLT/downloads.html
http://pypi.python.org/pypi/pip

MS Windows

pip install lxml==3.1.2

To speed up the build in test environments, e.g. on a continuous integration server, disable the C compiler optimi-
sations by setting the CFLAGS environment variable:

CFLAGS="-O0" pip install lxml

∙ For MS Windows, recent lxml releases feature community donated binary distributions, although you might
still want to take a look at the related FAQ entry. If you fail to build lxml on your MS Windows system from
the signed and tested sources that we release, consider using the binary builds from PyPI or the unofficial
Windows binaries that Christoph Gohlke generously provides.

∙ On Linux (and most other well-behaved operating systems), pip will manage to build the source distribu-
tion as long as libxml2 and libxslt are properly installed, including development packages, i.e. header files,
etc. Use your package management tool to look for packages like libxml2-dev or libxslt-devel if
the build fails, and make sure they are installed. Alternatively, setting STATIC_DEPS=true will down-
load and build both libraries automatically.

∙ On MacOS-X, use the following to build the source distribution, and make sure you have a working Internet
connection, as this will download libxml2 and libxslt in order to build them:

STATIC_DEPS=true sudo pip install lxml

Building lxml from sources

If you want to build lxml from the GitHub repository, you should read how to build lxml from source (or the file
doc/build.txt in the source tree). Building from developer sources or from modified distribution sources
requires Cython to translate the lxml sources into C code. The source distribution ships with pre-generated C
source files, so you do not need Cython installed to build from release sources.

If you have read these instructions and still cannot manage to install lxml, you can check the archives of the
mailing list to see if your problem is known or otherwise send a mail to the list.

Using lxml with python-libxml2

If you want to use lxml together with the official libxml2 Python bindings (maybe because one of your dependen-
cies uses it), you must build lxml statically. Otherwise, the two packages will interfere in places where the libxml2
library requires global configuration, which can have any kind of effect from disappearing functionality to crashes
in either of the two.

To get a static build, either pass the --static-deps option to the setup.py script, or run pip with the
STATIC_DEPS or STATICBUILD environment variable set to true, i.e.

STATIC_DEPS=true pip install lxml

The STATICBUILD environment variable is handled equivalently to the STATIC_DEPS variable, but is used by
some other extension packages, too.

MS Windows

Most MS Windows systems lack the necessarily tools to build software, starting with a C compiler already. Mi-
crosoft leaves it to users to install and configure them, which is usually not trivial and means that distributors

21

http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml
http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml
http://www.cython.org
http://lxml.de/mailinglist/

MacOS-X

cannot rely on these dependencies being available on a given system. In a way, you get what you’ve paid for and
make others pay for it.

Due to the additional lack of package management of this platform, it is best to link the library dependencies
statically if you decide to build from sources, rather than using a binary installer. For that, lxml can use the binary
distribution of libxml2 and libxslt, which it downloads automatically during the static build. It needs both libxml2
and libxslt, as well as iconv and zlib, which are available from the same download site. Further build instructions
are in the source build documentation.

MacOS-X

A macport of lxml is available. Try something like port install py25-lxml.

If you want to use a more recent lxml release, you may have to build it yourself. While the pre-installed system
libraries of libxml2 and libxslt are less outdated in recent MacOS-X versions than they used to be, so lxml should
work them them out of the box, it is still recommended to use a static build with the most recent versions.

Luckily, lxml’s setup.py script has built-in support for building and integrating these libraries statically during
the build. Please read the MacOS-X build instructions.

22

http://www.zlatkovic.com/libxml.en.html
http://www.zlatkovic.com/libxml.en.html
http://macports.org/

Chapter 4

Benchmarks and Speed

Author: Stefan Behnel

lxml.etree is a very fast XML library. Most of this is due to the speed of libxml2, e.g. the parser and serialiser,
or the XPath engine. Other areas of lxml were specifically written for high performance in high-level operations,
such as the tree iterators.

On the other hand, the simplicity of lxml sometimes hides internal operations that are more costly than the API
suggests. If you are not aware of these cases, lxml may not always perform as you expect. A common example
in the Python world is the Python list type. New users often expect it to be a linked list, while it actually is
implemented as an array, which results in a completely different complexity for common operations.

Similarly, the tree model of libxml2 is more complex than what lxml’s ElementTree API projects into Python
space, so some operations may show unexpected performance. Rest assured that most lxml users will not notice
this in real life, as lxml is very fast in absolute numbers. It is definitely fast enough for most applications, so lxml
is probably somewhere between ’fast enough’ and ’the best choice’ for yours. Read some messages from happy
users to see what we mean.

This text describes where lxml.etree (abbreviated to ’lxe’) excels, gives hints on some performance traps and
compares the overall performance to the original ElementTree (ET) and cElementTree (cET) libraries by Fredrik
Lundh. The cElementTree library is a fast C-implementation of the original ElementTree.

General notes

First thing to say: there is an overhead involved in having a DOM-like C library mimic the ElementTree API.
As opposed to ElementTree, lxml has to generate Python representations of tree nodes on the fly when asked for
them, and the internal tree structure of libxml2 results in a higher maintenance overhead than the simpler top-down
structure of ElementTree. What this means is: the more of your code runs in Python, the less you can benefit from
the speed of lxml and libxml2. Note, however, that this is true for most performance critical Python applications.
No one would implement fourier transformations in pure Python when you can use NumPy.

The up side then is that lxml provides powerful tools like tree iterators, XPath and XSLT, that can handle complex
operations at the speed of C. Their pythonic API in lxml makes them so flexible that most applications can easily
benefit from them.

23

http://permalink.gmane.org/gmane.comp.python.lxml.devel/3250
http://article.gmane.org/gmane.comp.python.lxml.devel/3246
http://thread.gmane.org/gmane.comp.python.lxml.devel/3244/focus=3244
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/celementtree.htm

Parsing and Serialising

How to read the timings

The statements made here are backed by the (micro-)benchmark scripts bench_etree.py, bench_xpath.py and
bench_objectify.py that come with the lxml source distribution. They are distributed under the same BSD li-
cense as lxml itself, and the lxml project would like to promote them as a general benchmarking suite for all
ElementTree implementations. New benchmarks are very easy to add as tiny test methods, so if you write a
performance test for a specific part of the API yourself, please consider sending it to the lxml mailing list.

The timings presented below compare lxml 3.1.1 (with libxml2 2.9.0) to the latest released versions of Element-
Tree (with cElementTree as accelerator module) in the standard library of CPython 3.3.0. They were run single-
threaded on a 2.9GHz 64bit double core Intel i7 machine under Ubuntu Linux 12.10 (Quantal). The C libraries
were compiled with the same platform specific optimisation flags. The Python interpreter was also manually
compiled for the platform. Note that many of the following ElementTree timings are therefore better than what a
normal Python installation with the standard library (c)ElementTree modules would yield. Note also that CPython
2.7 and 3.2+ come with a newer ElementTree version, so older Python installations will not perform as good for
(c)ElementTree, and sometimes substantially worse.

The scripts run a number of simple tests on the different libraries, using different XML tree configurations: dif-
ferent tree sizes (T1-4), with or without attributes (-/A), with or without ASCII string or unicode text (-/S/U), and
either against a tree or its serialised XML form (T/X). In the result extracts cited below, T1 refers to a 3-level
tree with many children at the third level, T2 is swapped around to have many children below the root element,
T3 is a deep tree with few children at each level and T4 is a small tree, slightly broader than deep. If repetition
is involved, this usually means running the benchmark in a loop over all children of the tree root, otherwise, the
operation is run on the root node (C/R).

As an example, the character code (SATR T1) states that the benchmark was running for tree T1, with plain
string text (S) and attributes (A). It was run against the root element (R) in the tree structure of the data (T).

Note that very small operations are repeated in integer loops to make them measurable. It is therefore not always
possible to compare the absolute timings of, say, a single access benchmark (which usually loops) and a ’get all
in one step’ benchmark, which already takes enough time to be measurable and is therefore measured as is. An
example is the index access to a single child, which cannot be compared to the timings for getchildren().
Take a look at the concrete benchmarks in the scripts to understand how the numbers compare.

Parsing and Serialising

Serialisation is an area where lxml excels. The reason is that it executes entirely at the C level, without any
interaction with Python code. The results are rather impressive, especially for UTF-8, which is native to libxml2.
While 20 to 40 times faster than (c)ElementTree 1.2 (which was part of the standard library before Python 2.7/3.2),
lxml is still more than 10 times as fast as the much improved ElementTree 1.3 in recent Python versions:

lxe: tostring_utf16 (S-TR T1) 7.9958 msec/pass
cET: tostring_utf16 (S-TR T1) 83.1358 msec/pass

lxe: tostring_utf16 (UATR T1) 8.3222 msec/pass
cET: tostring_utf16 (UATR T1) 84.4688 msec/pass

lxe: tostring_utf16 (S-TR T2) 8.2297 msec/pass
cET: tostring_utf16 (S-TR T2) 87.3415 msec/pass

lxe: tostring_utf8 (S-TR T2) 6.5677 msec/pass
cET: tostring_utf8 (S-TR T2) 76.2064 msec/pass

lxe: tostring_utf8 (U-TR T3) 1.1952 msec/pass

24

https://github.com/lxml/lxml/blob/master/benchmark/bench_etree.py
https://github.com/lxml/lxml/blob/master/benchmark/bench_xpath.py
https://github.com/lxml/lxml/blob/master/benchmark/bench_objectify.py

Parsing and Serialising

cET: tostring_utf8 (U-TR T3) 22.0058 msec/pass

The difference is somewhat smaller for plain text serialisation:

lxe: tostring_text_ascii (S-TR T1) 2.7738 msec/pass
cET: tostring_text_ascii (S-TR T1) 4.7629 msec/pass

lxe: tostring_text_ascii (S-TR T3) 0.8273 msec/pass
cET: tostring_text_ascii (S-TR T3) 1.5273 msec/pass

lxe: tostring_text_utf16 (S-TR T1) 2.7659 msec/pass
cET: tostring_text_utf16 (S-TR T1) 10.5038 msec/pass

lxe: tostring_text_utf16 (U-TR T1) 2.8017 msec/pass
cET: tostring_text_utf16 (U-TR T1) 10.5207 msec/pass

The tostring() function also supports serialisation to a Python unicode string object, which is currently faster
in ElementTree under CPython 3.3:

lxe: tostring_text_unicode (S-TR T1) 2.6896 msec/pass
cET: tostring_text_unicode (S-TR T1) 1.0056 msec/pass

lxe: tostring_text_unicode (U-TR T1) 2.7366 msec/pass
cET: tostring_text_unicode (U-TR T1) 1.0154 msec/pass

lxe: tostring_text_unicode (S-TR T3) 0.7997 msec/pass
cET: tostring_text_unicode (S-TR T3) 0.3154 msec/pass

lxe: tostring_text_unicode (U-TR T4) 0.0048 msec/pass
cET: tostring_text_unicode (U-TR T4) 0.0160 msec/pass

For parsing, lxml.etree and cElementTree compete for the medal. Depending on the input, either of the two can
be faster. The (c)ET libraries use a very thin layer on top of the expat parser, which is known to be very fast. Here
are some timings from the benchmarking suite:

lxe: parse_bytesIO (SAXR T1) 13.0246 msec/pass
cET: parse_bytesIO (SAXR T1) 8.2929 msec/pass

lxe: parse_bytesIO (S-XR T3) 1.3542 msec/pass
cET: parse_bytesIO (S-XR T3) 2.4023 msec/pass

lxe: parse_bytesIO (UAXR T3) 7.5610 msec/pass
cET: parse_bytesIO (UAXR T3) 11.2455 msec/pass

And another couple of timings from a benchmark that Fredrik Lundh used to promote cElementTree, comparing
a number of different parsers. First, parsing a 274KB XML file containing Shakespeare’s Hamlet:

xml.etree.ElementTree.parse done in 0.017 seconds
xml.etree.cElementTree.parse done in 0.007 seconds
xml.etree.cElementTree.XMLParser.feed(): 6636 nodes read in 0.007 seconds
lxml.etree.parse done in 0.003 seconds
drop_whitespace.parse done in 0.003 seconds
lxml.etree.XMLParser.feed(): 6636 nodes read in 0.004 seconds
minidom tree read in 0.080 seconds

And a 3.4MB XML file containing the Old Testament:

xml.etree.ElementTree.parse done in 0.038 seconds

25

http://svn.effbot.org/public/elementtree-1.3/benchmark.py
http://effbot.org/zone/celementtree.htm#benchmarks

Parsing and Serialising

xml.etree.cElementTree.parse done in 0.030 seconds
xml.etree.cElementTree.XMLParser.feed(): 25317 nodes read in 0.030 seconds
lxml.etree.parse done in 0.016 seconds
drop_whitespace.parse done in 0.015 seconds
lxml.etree.XMLParser.feed(): 25317 nodes read in 0.022 seconds
minidom tree read in 0.288 seconds

Here are the same benchmarks again, but including the memory usage of the process in KB before and after
parsing (using os.fork() to make sure we start from a clean state each time). For the 274KB hamlet.xml file:

Memory usage: 7284
xml.etree.ElementTree.parse done in 0.017 seconds
Memory usage: 9432 (+2148)
xml.etree.cElementTree.parse done in 0.007 seconds
Memory usage: 9432 (+2152)
xml.etree.cElementTree.XMLParser.feed(): 6636 nodes read in 0.007 seconds
Memory usage: 9448 (+2164)
lxml.etree.parse done in 0.003 seconds
Memory usage: 11032 (+3748)
drop_whitespace.parse done in 0.003 seconds
Memory usage: 10224 (+2940)
lxml.etree.XMLParser.feed(): 6636 nodes read in 0.004 seconds
Memory usage: 11804 (+4520)
minidom tree read in 0.080 seconds
Memory usage: 12324 (+5040)

And for the 3.4MB Old Testament XML file:

Memory usage: 10420
xml.etree.ElementTree.parse done in 0.038 seconds
Memory usage: 20660 (+10240)
xml.etree.cElementTree.parse done in 0.030 seconds
Memory usage: 20660 (+10240)
xml.etree.cElementTree.XMLParser.feed(): 25317 nodes read in 0.030 seconds
Memory usage: 20844 (+10424)
lxml.etree.parse done in 0.016 seconds
Memory usage: 27624 (+17204)
drop_whitespace.parse done in 0.015 seconds
Memory usage: 24468 (+14052)
lxml.etree.XMLParser.feed(): 25317 nodes read in 0.022 seconds
Memory usage: 29844 (+19424)
minidom tree read in 0.288 seconds
Memory usage: 28788 (+18368)

As can be seen from the sizes, both lxml.etree and cElementTree are rather memory friendly compared to the
pure Python libraries ElementTree and (especially) minidom. Comparing to older CPython versions, the memory
footprint of the minidom library was considerably reduced in CPython 3.3, by about a factor of 4 in this case.

For plain parser performance, lxml.etree and cElementTree tend to stay rather close to each other, usually within a
factor of two, with winners well distributed over both sides. Similar timings can be observed for the iterparse()
function:

lxe: iterparse_bytesIO (SAXR T1) 17.9198 msec/pass
cET: iterparse_bytesIO (SAXR T1) 14.4982 msec/pass

lxe: iterparse_bytesIO (UAXR T3) 8.8522 msec/pass
cET: iterparse_bytesIO (UAXR T3) 12.9857 msec/pass

26

The ElementTree API

However, if you benchmark the complete round-trip of a serialise-parse cycle, the numbers will look similar to
these:

lxe: write_utf8_parse_bytesIO (S-TR T1) 19.8867 msec/pass
cET: write_utf8_parse_bytesIO (S-TR T1) 80.7259 msec/pass

lxe: write_utf8_parse_bytesIO (UATR T2) 23.7896 msec/pass
cET: write_utf8_parse_bytesIO (UATR T2) 98.0766 msec/pass

lxe: write_utf8_parse_bytesIO (S-TR T3) 3.0684 msec/pass
cET: write_utf8_parse_bytesIO (S-TR T3) 24.6122 msec/pass

lxe: write_utf8_parse_bytesIO (SATR T4) 0.3495 msec/pass
cET: write_utf8_parse_bytesIO (SATR T4) 1.9610 msec/pass

For applications that require a high parser throughput of large files, and that do little to no serialization, both cET
and lxml.etree are a good choice. The cET library is particularly fast for iterparse applications that extract small
amounts of data or aggregate information from large XML data sets that do not fit into memory. If it comes to
round-trip performance, however, lxml is multiple times faster in total. So, whenever the input documents are not
considerably larger than the output, lxml is the clear winner.

Regarding HTML parsing, Ian Bicking has done some benchmarking on lxml’s HTML parser, comparing it to a
number of other famous HTML parser tools for Python. lxml wins this contest by quite a length. To give an idea,
the numbers suggest that lxml.html can run a couple of parse-serialise cycles in the time that other tools need for
parsing alone. The comparison even shows some very favourable results regarding memory consumption.

Liza Daly has written an article that presents a couple of tweaks to get the most out of lxml’s parser for very large
XML documents. She quite favourably positions lxml.etree as a tool for high-performance XML parsing.

Finally, xml.com has a couple of publications about XML parser performance. Farwick and Hafner have written
two interesting articles that compare the parser of libxml2 to some major Java based XML parsers. One deals
with event-driven parser performance, the other one presents benchmark results comparing DOM parsers. Both
comparisons suggest that libxml2’s parser performance is largely superiour to all commonly used Java parsers in
almost all cases. Note that the C parser benchmark results are based on xmlbench, which uses a simpler setup for
libxml2 than lxml does.

The ElementTree API

Since all three libraries implement the same API, their performance is easy to compare in this area. A major disad-
vantage for lxml’s performance is the different tree model that underlies libxml2. It allows lxml to provide parent
pointers for elements and full XPath support, but also increases the overhead of tree building and restructuring.
This can be seen from the tree setup times of the benchmark (given in seconds):

lxe: -- S- U- -A SA UA
T1: 0.0299 0.0343 0.0344 0.0293 0.0345 0.0342
T2: 0.0368 0.0423 0.0418 0.0427 0.0474 0.0459
T3: 0.0088 0.0084 0.0086 0.0251 0.0258 0.0261
T4: 0.0002 0.0002 0.0002 0.0005 0.0006 0.0006

cET: -- S- U- -A SA UA
T1: 0.0050 0.0045 0.0093 0.0044 0.0043 0.0043
T2: 0.0073 0.0075 0.0074 0.0201 0.0075 0.0074
T3: 0.0033 0.0213 0.0032 0.0034 0.0033 0.0035
T4: 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

27

http://blog.ianbicking.org/2008/03/30/python-html-parser-performance/
http://www.ibm.com/developerworks/xml/library/x-hiperfparse/
http://www.xml.com/
http://www.xml.com/lpt/a/1702
http://www.xml.com/lpt/a/1703
http://xmlbench.sourceforge.net/

Child access The ElementTree API

The timings are somewhat close to each other, although cET can be several times faster than lxml for larger trees.
One of the reasons is that lxml must encode incoming string data and tag names into UTF-8, and additionally
discard the created Python elements after their use, when they are no longer referenced. ElementTree represents
the tree itself through these objects, which reduces the overhead in creating them.

Child access

The same tree overhead makes operations like collecting children as in list(element) more costly in lxml.
Where cET can quickly create a shallow copy of their list of children, lxml has to create a Python object for each
child and collect them in a list:

lxe: root_list_children (--TR T1) 0.0038 msec/pass
cET: root_list_children (--TR T1) 0.0010 msec/pass

lxe: root_list_children (--TR T2) 0.0455 msec/pass
cET: root_list_children (--TR T2) 0.0050 msec/pass

This handicap is also visible when accessing single children:

lxe: first_child (--TR T2) 0.0424 msec/pass
cET: first_child (--TR T2) 0.0384 msec/pass

lxe: last_child (--TR T1) 0.0477 msec/pass
cET: last_child (--TR T1) 0.0467 msec/pass

... unless you also add the time to find a child index in a bigger list. ET and cET use Python lists here, which are
based on arrays. The data structure used by libxml2 is a linked tree, and thus, a linked list of children:

lxe: middle_child (--TR T1) 0.0710 msec/pass
cET: middle_child (--TR T1) 0.0420 msec/pass

lxe: middle_child (--TR T2) 1.7393 msec/pass
cET: middle_child (--TR T2) 0.0396 msec/pass

Element creation

As opposed to ET, libxml2 has a notion of documents that each element must be in. This results in a major
performance difference for creating independent Elements that end up in independently created documents:

lxe: create_elements (--TC T2) 1.0045 msec/pass
cET: create_elements (--TC T2) 0.0753 msec/pass

Therefore, it is always preferable to create Elements for the document they are supposed to end up in, either as
SubElements of an Element or using the explicit Element.makeelement() call:

lxe: makeelement (--TC T2) 1.0586 msec/pass
cET: makeelement (--TC T2) 0.1483 msec/pass

lxe: create_subelements (--TC T2) 0.8826 msec/pass
cET: create_subelements (--TC T2) 0.0827 msec/pass

So, if the main performance bottleneck of an application is creating large XML trees in memory through calls to
Element and SubElement, cET is the best choice. Note, however, that the serialisation performance may even out
this advantage, especially for smaller trees and trees with many attributes.

28

Merging different sources The ElementTree API

Merging different sources

A critical action for lxml is moving elements between document contexts. It requires lxml to do recursive adapta-
tions throughout the moved tree structure.

The following benchmark appends all root children of the second tree to the root of the first tree:

lxe: append_from_document (--TR T1,T2) 1.0812 msec/pass
cET: append_from_document (--TR T1,T2) 0.1104 msec/pass

lxe: append_from_document (--TR T3,T4) 0.0155 msec/pass
cET: append_from_document (--TR T3,T4) 0.0060 msec/pass

Although these are fairly small numbers compared to parsing, this easily shows the different performance classes
for lxml and (c)ET. Where the latter do not have to care about parent pointers and tree structures, lxml has to deep
traverse the appended tree. The performance difference therefore increases with the size of the tree that is moved.

This difference is not always as visible, but applies to most parts of the API, like inserting newly created elements:

lxe: insert_from_document (--TR T1,T2) 3.9763 msec/pass
cET: insert_from_document (--TR T1,T2) 0.1459 msec/pass

or replacing the child slice by a newly created element:

lxe: replace_children_element (--TC T1) 0.0749 msec/pass
cET: replace_children_element (--TC T1) 0.0081 msec/pass

as opposed to replacing the slice with an existing element from the same document:

lxe: replace_children (--TC T1) 0.0052 msec/pass
cET: replace_children (--TC T1) 0.0036 msec/pass

While these numbers are too small to provide a major performance impact in practice, you should keep this
difference in mind when you merge very large trees. Note that Elements have a makeelement() method that
allows to create an Element within the same document, thus avoiding the merge overhead when inserting it into
that tree.

deepcopy

Deep copying a tree is fast in lxml:

lxe: deepcopy_all (--TR T1) 3.1650 msec/pass
cET: deepcopy_all (--TR T1) 53.9973 msec/pass

lxe: deepcopy_all (-ATR T2) 3.7365 msec/pass
cET: deepcopy_all (-ATR T2) 61.6267 msec/pass

lxe: deepcopy_all (S-TR T3) 0.7913 msec/pass
cET: deepcopy_all (S-TR T3) 13.6220 msec/pass

So, for example, if you have a database-like scenario where you parse in a large tree and then search and copy
independent subtrees from it for further processing, lxml is by far the best choice here.

29

Tree traversal XPath

Tree traversal

Another important area in XML processing is iteration for tree traversal. If your algorithms can benefit from
step-by-step traversal of the XML tree and especially if few elements are of interest or the target element tag name
is known, the .iter() method is a good choice:

lxe: iter_all (--TR T1) 1.0529 msec/pass
cET: iter_all (--TR T1) 0.2635 msec/pass

lxe: iter_islice (--TR T2) 0.0110 msec/pass
cET: iter_islice (--TR T2) 0.0050 msec/pass

lxe: iter_tag (--TR T2) 0.0079 msec/pass
cET: iter_tag (--TR T2) 0.0112 msec/pass

lxe: iter_tag_all (--TR T2) 0.1822 msec/pass
cET: iter_tag_all (--TR T2) 0.5343 msec/pass

This translates directly into similar timings for Element.findall():

lxe: findall (--TR T2) 1.7176 msec/pass
cET: findall (--TR T2) 0.9973 msec/pass

lxe: findall (--TR T3) 0.3967 msec/pass
cET: findall (--TR T3) 0.2525 msec/pass

lxe: findall_tag (--TR T2) 0.2258 msec/pass
cET: findall_tag (--TR T2) 0.5770 msec/pass

lxe: findall_tag (--TR T3) 0.1085 msec/pass
cET: findall_tag (--TR T3) 0.1919 msec/pass

Note that all three libraries currently use the same Python implementation for .findall(), except for their
native tree iterator (element.iter()). In general, lxml is very fast for iteration, but looses ground against cET
when many Elements are found and need to be instantiated. So, the more selective your search is, the faster lxml
will run.

XPath

The following timings are based on the benchmark script bench_xpath.py.

This part of lxml does not have an equivalent in ElementTree. However, lxml provides more than one way of
accessing it and you should take care which part of the lxml API you use. The most straight forward way is to call
the xpath() method on an Element or ElementTree:

lxe: xpath_method (--TC T1) 0.3982 msec/pass
lxe: xpath_method (--TC T2) 7.8895 msec/pass
lxe: xpath_method (--TC T3) 0.0477 msec/pass
lxe: xpath_method (--TC T4) 0.3982 msec/pass

This is well suited for testing and when the XPath expressions are as diverse as the trees they are called on.
However, if you have a single XPath expression that you want to apply to a larger number of different elements,
the XPath class is the most efficient way to do it:

lxe: xpath_class (--TC T1) 0.0713 msec/pass

30

https://github.com/lxml/lxml/blob/master/benchmark/bench_xpath.py

A longer example

lxe: xpath_class (--TC T2) 1.1325 msec/pass
lxe: xpath_class (--TC T3) 0.0215 msec/pass
lxe: xpath_class (--TC T4) 0.0722 msec/pass

Note that this still allows you to use variables in the expression, so you can parse it once and then adapt it through
variables at call time. In other cases, where you have a fixed Element or ElementTree and want to run different
expressions on it, you should consider the XPathEvaluator:

lxe: xpath_element (--TR T1) 0.1101 msec/pass
lxe: xpath_element (--TR T2) 2.0473 msec/pass
lxe: xpath_element (--TR T3) 0.0267 msec/pass
lxe: xpath_element (--TR T4) 0.1087 msec/pass

While it looks slightly slower, creating an XPath object for each of the expressions generates a much higher
overhead here:

lxe: xpath_class_repeat (--TC T1) 0.3884 msec/pass
lxe: xpath_class_repeat (--TC T2) 7.6182 msec/pass
lxe: xpath_class_repeat (--TC T3) 0.0465 msec/pass
lxe: xpath_class_repeat (--TC T4) 0.3877 msec/pass

Note that tree iteration can be substantially faster than XPath if your code short-circuits after the first couple of
elements were found. The XPath engine will always return the complete result set, regardless of how much of it
will actually be used.

Here is an example where only the first matching element is being searched, a case for which XPath has syntax
support as well:

lxe: find_single (--TR T2) 0.0184 msec/pass
cET: find_single (--TR T2) 0.0052 msec/pass

lxe: iter_single (--TR T2) 0.0024 msec/pass
cET: iter_single (--TR T2) 0.0007 msec/pass

lxe: xpath_single (--TR T2) 0.0033 msec/pass

When looking for the first two elements out of many, the numbers explode for XPath, as restricting the result
subset requires a more complex expression:

lxe: iterfind_two (--TR T2) 0.0184 msec/pass
cET: iterfind_two (--TR T2) 0.0062 msec/pass

lxe: iter_two (--TR T2) 0.0029 msec/pass
cET: iter_two (--TR T2) 0.0017 msec/pass

lxe: xpath_two (--TR T2) 0.2768 msec/pass

A longer example

... based on lxml 1.3.

A while ago, Uche Ogbuji posted a benchmark proposal that would read in a 3MB XML version of the Old
Testament of the Bible and look for the word begat in all verses. Apparently, it is contained in 120 out of almost
24000 verses. This is easy to implement in ElementTree using findall(). However, the fastest and most
memory friendly way to do this is obviously iterparse(), as most of the data is not of any interest.

Now, Uche’s original proposal was more or less the following:

31

http://www.onlamp.com/pub/wlg/6291
http://www.ibiblio.org/bosak/xml/eg/religion.2.00.xml.zip
http://www.ibiblio.org/bosak/xml/eg/religion.2.00.xml.zip

A longer example

def bench_ET():
tree = ElementTree.parse("ot.xml")
result = []
for v in tree.findall("//v"):

text = v.text
if ’begat’ in text:

result.append(text)
return len(result)

which takes about one second on my machine today. The faster iterparse() variant looks like this:

def bench_ET_iterparse():
result = []
for event, v in ElementTree.iterparse("ot.xml"):

if v.tag == ’v’:
text = v.text
if ’begat’ in text:

result.append(text)
v.clear()

return len(result)

The improvement is about 10%. At the time I first tried (early 2006), lxml didn’t have iterparse() support,
but the findall() variant was already faster than ElementTree. This changes immediately when you switch to
cElementTree. The latter only needs 0.17 seconds to do the trick today and only some impressive 0.10 seconds
when running the iterparse version. And even back then, it was quite a bit faster than what lxml could achieve.

Since then, lxml has matured a lot and has gotten much faster. The iterparse variant now runs in 0.14 seconds, and
if you remove the v.clear(), it is even a little faster (which isn’t the case for cElementTree).

One of the many great tools in lxml is XPath, a swiss army knife for finding things in XML documents. It is
possible to move the whole thing to a pure XPath implementation, which looks like this:

def bench_lxml_xpath_all():
tree = etree.parse("ot.xml")
result = tree.xpath("//v[contains(., ’begat’)]/text()")
return len(result)

This runs in about 0.13 seconds and is about the shortest possible implementation (in lines of Python code) that
I could come up with. Now, this is already a rather complex XPath expression compared to the simple “//v”
ElementPath expression we started with. Since this is also valid XPath, let’s try this instead:

def bench_lxml_xpath():
tree = etree.parse("ot.xml")
result = []
for v in tree.xpath("//v"):

text = v.text
if ’begat’ in text:

result.append(text)
return len(result)

This gets us down to 0.12 seconds, thus showing that a generic XPath evaluation engine cannot always compete
with a simpler, tailored solution. However, since this is not much different from the original findall variant, we
can remove the complexity of the XPath call completely and just go with what we had in the beginning. Under
lxml, this runs in the same 0.12 seconds.

But there is one thing left to try. We can replace the simple ElementPath expression with a native tree iterator:

def bench_lxml_getiterator():
tree = etree.parse("ot.xml")

32

lxml.objectify

result = []
for v in tree.getiterator("v"):

text = v.text
if ’begat’ in text:

result.append(text)
return len(result)

This implements the same thing, just without the overhead of parsing and evaluating a path expression. And this
makes it another bit faster, down to 0.11 seconds. For comparison, cElementTree runs this version in 0.17 seconds.

So, what have we learned?

∙ Python code is not slow. The pure XPath solution was not even as fast as the first shot Python implementa-
tion. In general, a few more lines in Python make things more readable, which is much more important than
the last 5% of performance.

∙ It’s important to know the available options - and it’s worth starting with the most simple one. In this case,
a programmer would then probably have started with getiterator("v") or iterparse(). Either of
them would already have been the most efficient, depending on which library is used.

∙ It’s important to know your tool. lxml and cElementTree are both very fast libraries, but they do not have
the same performance characteristics. The fastest solution in one library can be comparatively slow in the
other. If you optimise, optimise for the specific target platform.

∙ It’s not always worth optimising. After all that hassle we got from 0.12 seconds for the initial implementa-
tion to 0.11 seconds. Switching over to cElementTree and writing an iterparse() based version would
have given us 0.10 seconds - not a big difference for 3MB of XML.

∙ Take care what operation is really dominating in your use case. If we split up the operations, we can see that
lxml is slightly slower than cElementTree on parse() (both about 0.06 seconds), but more visibly slower
on iterparse(): 0.07 versus 0.10 seconds. However, tree iteration in lxml is increadibly fast, so it can
be better to parse the whole tree and then iterate over it rather than using iterparse() to do both in one
step. Or, you can just wait for the lxml developers to optimise iterparse in one of the next releases...

lxml.objectify

The following timings are based on the benchmark script bench_objectify.py.

Objectify is a data-binding API for XML based on lxml.etree, that was added in version 1.1. It uses standard
Python attribute access to traverse the XML tree. It also features ObjectPath, a fast path language based on the
same meme.

Just like lxml.etree, lxml.objectify creates Python representations of elements on the fly. To save memory, the
normal Python garbage collection mechanisms will discard them when their last reference is gone. In cases where
deeply nested elements are frequently accessed through the objectify API, the create-discard cycles can become a
bottleneck, as elements have to be instantiated over and over again.

ObjectPath

ObjectPath can be used to speed up the access to elements that are deep in the tree. It avoids step-by-step Python
element instantiations along the path, which can substantially improve the access time:

lxe: attribute (--TR T1) 4.1828 msec/pass
lxe: attribute (--TR T2) 17.3802 msec/pass
lxe: attribute (--TR T4) 3.8657 msec/pass

33

https://github.com/lxml/lxml/blob/master/benchmark/bench_objectify.py

Caching Elements lxml.objectify

lxe: objectpath (--TR T1) 0.9289 msec/pass
lxe: objectpath (--TR T2) 13.3109 msec/pass
lxe: objectpath (--TR T4) 0.9289 msec/pass

lxe: attributes_deep (--TR T1) 6.2900 msec/pass
lxe: attributes_deep (--TR T2) 20.4713 msec/pass
lxe: attributes_deep (--TR T4) 6.1679 msec/pass

lxe: objectpath_deep (--TR T1) 1.3049 msec/pass
lxe: objectpath_deep (--TR T2) 14.0815 msec/pass
lxe: objectpath_deep (--TR T4) 1.3051 msec/pass

Note, however, that parsing ObjectPath expressions is not for free either, so this is most effective for frequently
accessing the same element.

Caching Elements

A way to improve the normal attribute access time is static instantiation of the Python objects, thus trading memory
for speed. Just create a cache dictionary and run:

cache[root] = list(root.iter())

after parsing and:

del cache[root]

when you are done with the tree. This will keep the Python element representations of all elements alive and thus
avoid the overhead of repeated Python object creation. You can also consider using filters or generator expressions
to be more selective. By choosing the right trees (or even subtrees and elements) to cache, you can trade memory
usage against access speed:

lxe: attribute_cached (--TR T1) 3.1357 msec/pass
lxe: attribute_cached (--TR T2) 15.8911 msec/pass
lxe: attribute_cached (--TR T4) 2.9194 msec/pass

lxe: attributes_deep_cached (--TR T1) 3.8984 msec/pass
lxe: attributes_deep_cached (--TR T2) 16.8300 msec/pass
lxe: attributes_deep_cached (--TR T4) 3.6936 msec/pass

lxe: objectpath_deep_cached (--TR T1) 0.7496 msec/pass
lxe: objectpath_deep_cached (--TR T2) 12.3763 msec/pass
lxe: objectpath_deep_cached (--TR T4) 0.7427 msec/pass

Things to note: you cannot currently use weakref.WeakKeyDictionary objects for this as lxml’s element
objects do not support weak references (which are costly in terms of memory). Also note that new element objects
that you add to these trees will not turn up in the cache automatically and will therefore still be garbage collected
when all their Python references are gone, so this is most effective for largely immutable trees. You should
consider using a set instead of a list in this case and add new elements by hand.

Further optimisations

Here are some more things to try if optimisation is required:

∙ A lot of time is usually spent in tree traversal to find the addressed elements in the tree. If you often work in

34

Further optimisations lxml.objectify

subtrees, do what you would also do with deep Python objects: assign the parent of the subtree to a variable
or pass it into functions instead of starting at the root. This allows accessing its descendents more directly.

∙ Try assigning data values directly to attributes instead of passing them through DataElement.

∙ If you use custom data types that are costly to parse, try running objectify.annotate() over read-
only trees to speed up the attribute type inference on read access.

Note that none of these measures is guaranteed to speed up your application. As usual, you should prefer readable
code over premature optimisations and profile your expected use cases before bothering to apply optimisations at
random.

35

Chapter 5

ElementTree compatibility of lxml.etree

A lot of care has been taken to ensure compatibility between etree and ElementTree. Nonetheless, some differences
and incompatibilities exist:

∙ Importing etree is obviously different; etree uses a lower-case package name, while ElementTree uses a
combination of upper-case and lower case in imports:

etree
from lxml.etree import Element

ElementTree
from elementtree.ElementTree import Element

ElementTree in the Python 2.5 standard library
from xml.etree.ElementTree import Element

When switching over code from ElementTree to lxml.etree, and you’re using the package name prefix
’ElementTree’, you can do the following:

instead of
from elementtree import ElementTree
use
from lxml import etree as ElementTree

∙ lxml.etree offers a lot more functionality, such as XPath, XSLT, Relax NG, and XML Schema support,
which (c)ElementTree does not offer.

∙ etree has a different idea about Python unicode strings than ElementTree. In most parts of the API, Ele-
mentTree uses plain strings and unicode strings as what they are. This includes Element.text, Element.tail
and many other places. However, the ElementTree parsers assume by default that any string (str or unicode)
contains ASCII data. They raise an exception if strings do not match the expected encoding.

etree has the same idea about plain strings (str) as ElementTree. For unicode strings, however, etree assumes
throughout the API that they are Python unicode encoded strings rather than byte data. This includes the
parsers. It is therefore perfectly correct to pass XML unicode data into the etree parsers in form of Python
unicode strings. It is an error, on the other hand, if unicode strings specify an encoding in their XML
declaration, as this conflicts with the characteristic encoding of Python unicode strings.

∙ ElementTree allows you to place an Element in two different trees at the same time. Thus, this:

a = Element(’a’)
b = SubElement(a, ’b’)

36

CHAPTER 5. ELEMENTTREE COMPATIBILITY OF LXML.ETREE

c = Element(’c’)
c.append(b)

will result in the following tree a:

<a>

and the following tree c:

<c></c>

In lxml, this behavior is different, because lxml is built on top of a tree that maintains parent relationships
for elements (like W3C DOM). This means an element can only exist in a single tree at the same time.
Adding an element in some tree to another tree will cause this element to be moved.

So, for tree a we will get:

<a>

and for tree c we will get:

<c></c>

Unfortunately this is a rather fundamental difference in behavior, which is hard to change. It won’t affect
some applications, but if you want to port code you must unfortunately make sure that it doesn’t affect
yours.

∙ etree allows navigation to the parent of a node by the getparent() method and to the siblings by calling
getnext() and getprevious(). This is not possible in ElementTree as the underlying tree model
does not have this information.

∙ When trying to set a subelement using __setitem__ that is in fact not an Element but some other object,
etree raises a TypeError, and ElementTree raises an AssertionError. This also applies to some other places
of the API. In general, etree tries to avoid AssertionErrors in favour of being more specific about the reason
for the exception.

∙ When parsing fails in iterparse(), ElementTree up to version 1.2.x raises a low-level ExpatError
instead of a SyntaxError as the other parsers. Both lxml and ElementTree 1.3 raise a ParseError for
parser errors.

∙ The iterparse() function in lxml is implemented based on the libxml2 parser and tree generator. This
means that modifications of the document root or the ancestors of the current element during parsing can
irritate the parser and even segfault. While this is not a problem in the Python object structure used by
ElementTree, the C tree underlying lxml suffers from it. The golden rule for iterparse() on lxml
therefore is: do not touch anything that will have to be touched again by the parser later on. See the lxml
parser documentation on this.

∙ ElementTree ignores comments and processing instructions when parsing XML, while etree will read them
in and treat them as Comment or ProcessingInstruction elements respectively. This is especially visible
where comments are found inside text content, which is then split by the Comment element.

You can disable this behaviour by passing the boolean remove_comments and/or remove_pis key-
word arguments to the parser you use. For convenience and to support portable code, you can also use the
etree.ETCompatXMLParser instead of the default etree.XMLParser. It tries to provide a default
setup that is as close to the ElementTree parser as possible.

∙ The TreeBuilder class of lxml.etree uses a different signature for the start() method. It accepts
an additional argument nsmap to propagate the namespace declarations of an element in addition to its
own namespace. To assure compatibility with ElementTree (which does not support this argument), lxml
checks if the method accepts 3 arguments before calling it, and otherwise drops the namespace mapping.

37

CHAPTER 5. ELEMENTTREE COMPATIBILITY OF LXML.ETREE

This should work with most existing ElementTree code, although there may still be conflicting cases.

∙ ElementTree 1.2 has a bug when serializing an empty Comment (no text argument given) to XML, etree
serializes this successfully.

∙ ElementTree adds whitespace around comments on serialization, lxml does not. This means that a comment
text “text” that ElementTree serializes as “<!-- text -->” will become “<!--text-->” in lxml.

∙ When the string ’*’ is used as tag filter in the Element.getiterator() method, ElementTree re-
turns all elements in the tree, including comments and processing instructions. lxml.etree only returns real
Elements, i.e. tree nodes that have a string tag name. Without a filter, both libraries iterate over all nodes.

Note that currently only lxml.etree supports passing the Element factory function as filter to select only
Elements. Both libraries support passing the Comment and ProcessingInstruction factories to
select the respective tree nodes.

∙ ElementTree merges the target of a processing instruction into PI.text, while lxml.etree puts it into the
.target property and leaves it out of the .text property. The pi.text in ElementTree therefore
correspondents to pi.target + " " + pi.text in lxml.etree.

∙ Because etree is built on top of libxml2, which is namespace prefix aware, etree preserves namespaces
declarations and prefixes while ElementTree tends to come up with its own prefixes (ns0, ns1, etc). When
no namespace prefix is given, however, etree creates ElementTree style prefixes as well.

∙ etree has a ’prefix’ attribute (read-only) on elements giving the Element’s prefix, if this is known, and None
otherwise (in case of no namespace at all, or default namespace).

∙ etree further allows passing an ’nsmap’ dictionary to the Element and SubElement element factories to
explicitly map namespace prefixes to namespace URIs. These will be translated into namespace declarations
on that element. This means that in the probably rare case that you need to construct an attribute called
’nsmap’, you need to be aware that unlike in ElementTree, you cannot pass it as a keyword argument to the
Element and SubElement factories directly.

∙ ElementTree allows QName objects as attribute values and resolves their prefix on serialisation (e.g. an
attribute value QName("{myns}myname") becomes “p:myname” if “p” is the namespace prefix of
“myns”). lxml.etree also allows you to set attribute values from QName instances (and also .text values),
but it resolves their prefix immediately and stores the plain text value. So, if prefixes are modified later on,
e.g. by moving a subtree to a different tree (which reassigns the prefix mappings), the text values will not
be updated and you might end up with an undefined prefix.

∙ etree elements can be copied using copy.deepcopy() and copy.copy(), just like ElementTree’s.
However, copy.copy() does not create a shallow copy where elements are shared between trees, as this
makes no sense in the context of libxml2 trees. Note that lxml can deep-copy trees considerably faster than
ElementTree, so a deep copy might still be fast enough to replace a shallow copy in your case.

38

Chapter 6

lxml FAQ - Frequently Asked Questions

Frequently asked questions on lxml. See also the notes on compatibility to ElementTree.

General Questions

Is there a tutorial?

Read the lxml.etree Tutorial. While this is still work in progress (just as any good documentation), it provides an
overview of the most important concepts in lxml.etree. If you want to help out, improving the tutorial is a
very good place to start.

There is also a tutorial for ElementTree which works for lxml.etree. The documentation of the extended
etree API also contains many examples for lxml.etree. Fredrik Lundh’s element library contains a lot of nice
recipes that show how to solve common tasks in ElementTree and lxml.etree. To learn using lxml.objectify,
read the objectify documentation.

John Shipman has written another tutorial called Python XML processing with lxml that contains lots of examples.
Liza Daly wrote a nice article about high-performance aspects when parsing large files with lxml.

Where can I find more documentation about lxml?

There is a lot of documentation on the web and also in the Python standard library documentation, as lxml imple-
ments the well-known ElementTree API and tries to follow its documentation as closely as possible. The recipes
in Fredrik Lundh’s element library are generally worth taking a look at. There are a couple of issues where lxml
cannot keep up compatibility. They are described in the compatibility documentation.

The lxml specific extensions to the API are described by individual files in the doc directory of the source distri-
bution and on the web page.

The generated API documentation is a comprehensive API reference for the lxml package.

What standards does lxml implement?

The compliance to XML Standards depends on the support in libxml2 and libxslt. Here is a quote from http:
//xmlsoft.org/:

39

http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element.htm
http://effbot.org/zone/element-lib.htm
http://www.nmt.edu/tcc/help/pubs/pylxml/
http://www.ibm.com/developerworks/xml/library/x-hiperfparse/
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-lib.htm
http://lxml.de/#documentation
api/index.html
http://xmlsoft.org/
http://xmlsoft.org/

Who uses lxml? General Questions

In most cases libxml2 tries to implement the specifications in a relatively strictly compliant way. As
of release 2.4.16, libxml2 passed all 1800+ tests from the OASIS XML Tests Suite.

lxml currently supports libxml2 2.6.20 or later, which has even better support for various XML standards. The
important ones are:

∙ XML 1.0

∙ HTML 4

∙ XML namespaces

∙ XML Schema 1.0

∙ XPath 1.0

∙ XInclude 1.0

∙ XSLT 1.0

∙ EXSLT

∙ XML catalogs

∙ canonical XML

∙ RelaxNG

∙ xml:id

∙ xml:base

Support for XML Schema is currently not 100% complete in libxml2, but is definitely very close to compliance.
Schematron is supported in two ways, the best being the original ISO Schematron reference implementation via
XSLT. libxml2 also supports loading documents through HTTP and FTP.

For RelaxNG Compact Syntax support, there is a tool called rnc2rng, written by David Mertz, which you might
be able to use from Python. Failing that, trang is the ’official’ command line tool (written in Java) to do the
conversion.

Who uses lxml?

As an XML library, lxml is often used under the hood of in-house server applications, such as web servers or
applications that facilitate some kind of content management. Many people who deploy Zope, Plone or Django
use it together with lxml in the background, without speaking publicly about it. Therefore, it is hard to get an idea
of who uses it, and the following list of ’users and projects we know of’ is very far from a complete list of lxml’s
users.

Also note that the compatibility to the ElementTree library does not require projects to set a hard dependency on
lxml - as long as they do not take advantage of lxml’s enhanced feature set.

∙ cssutils, a CSS parser and toolkit, can be used with lxml.cssselect

∙ Deliverance, a content theming tool

∙ Enfold Proxy 4, a web server accelerator with on-the-fly XSLT processing

∙ Inteproxy, a secure HTTP proxy

∙ lwebstring, an XML template engine

40

http://relaxng.org/compact-tutorial-20030326.html
http://www.gnosis.cx/download/relax/
http://code.google.com/p/jing-trang/
http://www.zope.org/
http://www.plone.org/
https://www.djangoproject.com/
http://code.google.com/p/cssutils/source/browse/trunk/examples/style.py?r=917
http://www.openplans.org/projects/deliverance/project-home
http://www.enfoldsystems.com/Products/Proxy/4
http://lists.wald.intevation.org/pipermail/inteproxy-devel/2007-February/000000.html
http://pypi.python.org/pypi/lwebstring

What is the difference between lxml.etree and lxml.objectify? General Questions

∙ OpenXMLlib, a library for handling OpenXML document meta data

∙ PsychoPy, psychology software in Python

∙ Pycoon, a WSGI web development framework based on XML pipelines

∙ PyQuery, a query framework for XML/HTML, similar to jQuery for JavaScript

∙ python-docx, a package for handling Microsoft’s Word OpenXML format

∙ Rambler, a meta search engine that aggregates different data sources

∙ rdfadict, an RDFa parser with a simple dictionary-like interface.

∙ xupdate-processor, an XUpdate implementation for lxml.etree

∙ Diazo, an XSLT-under-the-hood web site theming engine

Zope3 and some of its extensions have good support for lxml:

∙ gocept.lxml, Zope3 interface bindings for lxml

∙ z3c.rml, an implementation of ReportLab’s RML format

∙ zif.sedna, an XQuery based interface to the Sedna OpenSource XML database

And don’t miss the quotes by our generally happy users, and other sites that link to lxml. As Liza Daly puts
it: “Many software products come with the pick-two caveat, meaning that you must choose only two: speed,
flexibility, or readability. When used carefully, lxml can provide all three.”

What is the difference between lxml.etree and lxml.objectify?

The two modules provide different ways of handling XML. However, objectify builds on top of lxml.etree and
therefore inherits most of its capabilities and a large portion of its API.

∙ lxml.etree is a generic API for XML and HTML handling. It aims for ElementTree compatibility and
supports the entire XML infoset. It is well suited for both mixed content and data centric XML. Its generality
makes it the best choice for most applications.

∙ lxml.objectify is a specialized API for XML data handling in a Python object syntax. It provides a very
natural way to deal with data fields stored in a structurally well defined XML format. Data is automatically
converted to Python data types and can be manipulated with normal Python operators. Look at the examples
in the objectify documentation to see what it feels like to use it.

Objectify is not well suited for mixed contents or HTML documents. As it is built on top of lxml.etree,
however, it inherits the normal support for XPath, XSLT or validation.

How can I make my application run faster?

lxml.etree is a very fast library for processing XML. There are, however, a few caveats involved in the mapping
of the powerful libxml2 library to the simple and convenient ElementTree API. Not all operations are as fast as
the simplicity of the API might suggest, while some use cases can heavily benefit from finding the right way of
doing them. The benchmark page has a comparison to other ElementTree implementations and a number of tips
for performance tweaking. As with any Python application, the rule of thumb is: the more of your processing runs
in C, the faster your application gets. See also the section on threading.

41

http://permalink.gmane.org/gmane.comp.python.lxml.devel/3250
http://www.psychopy.org/
http://pypi.python.org/pypi/pycoon
http://pypi.python.org/pypi/pyquery
http://github.com/mikemaccana/python-docx
http://beta.rambler.ru/srch?query=python+lxml&searchtype=web
http://pypi.python.org/pypi/rdfadict
http://pypi.python.org/pypi/xupdate-processor
http://docs.diazo.org/
http://pypi.python.org/pypi/gocept.lxml
http://pypi.python.org/pypi/z3c.rml
http://pypi.python.org/pypi/zif.sedna
http://thread.gmane.org/gmane.comp.python.lxml.devel/3244/focus=3244
http://article.gmane.org/gmane.comp.python.lxml.devel/3246
http://www.google.com/search?as_lq=http:%2F%2Flxml.de%2F
http://www.ibm.com/developerworks/xml/library/x-hiperfparse/

What about that trailing text on serialised Elements? General Questions

What about that trailing text on serialised Elements?

The ElementTree tree model defines an Element as a container with a tag name, contained text, child Elements
and a tail text. This means that whenever you serialise an Element, you will get all parts of that Element:

>>> root = etree.XML("<root><tag>text<child/></tag>tail</root>")
>>> print(etree.tostring(root[0]))
<tag>text<child/></tag>tail

Here is an example that shows why not serialising the tail would be even more surprising from an object point of
view:

>>> root = etree.Element("test")

>>> root.text = "TEXT"
>>> print(etree.tostring(root))
<test>TEXT</test>

>>> root.tail = "TAIL"
>>> print(etree.tostring(root))
<test>TEXT</test>TAIL

>>> root.tail = None
>>> print(etree.tostring(root))
<test>TEXT</test>

Just imagine a Python list where you append an item and it doesn’t show up when you look at the list.

The .tail property is a huge simplification for the tree model as it avoids text nodes to appear in the list of
children and makes access to them quick and simple. So this is a benefit in most applications and simplifies many,
many XML tree algorithms.

However, in document-like XML (and especially HTML), the above result can be unexpected to new users and
can sometimes require a bit more overhead. A good way to deal with this is to use helper functions that copy
the Element without its tail. The lxml.html package also deals with this in a couple of places, as most HTML
algorithms benefit from a tail-free behaviour.

How can I find out if an Element is a comment or PI?

>>> root = etree.XML("<?my PI?><root><!-- empty --></root>")

>>> root.tag
’root’
>>> root.getprevious().tag is etree.PI
True
>>> root[0].tag is etree.Comment
True

How can I map an XML tree into a dict of dicts?

I’m glad you asked.

def recursive_dict(element):
return element.tag, \

dict(map(recursive_dict, element)) or element.text

42

Why does lxml sometimes return ’str’ values for text in Python 2? Installation

Why does lxml sometimes return ’str’ values for text in Python 2?

In Python 2, lxml’s API returns byte strings for plain ASCII text values, be it for tag names or text in Element
content. This is the same behaviour as known from ElementTree. The reasoning is that ASCII encoded byte
strings are compatible with Unicode strings in Python 2, but consume less memory (usually by a factor of 2 or
4) and are faster to create because they do not require decoding. Plain ASCII string values are very common in
XML, so this optimisation is generally worth it.

In Python 3, lxml always returns Unicode strings for text and names, as does ElementTree. Since Python 3.3,
Unicode strings containing only characters that can be encoded in ASCII or Latin-1 are generally as efficient as
byte strings. In older versions of Python 3, the above mentioned drawbacks apply.

Installation

Which version of libxml2 and libxslt should I use or require?

It really depends on your application, but the rule of thumb is: more recent versions contain less bugs and provide
more features.

∙ Do not use libxml2 2.6.27 if you want to use XPath (including XSLT). You will get crashes when XPath
errors occur during the evaluation (e.g. for unknown functions). This happens inside the evaluation call to
libxml2, so there is nothing that lxml can do about it.

∙ Try to use versions of both libraries that were released together. At least the libxml2 version should not be
older than the libxslt version.

∙ If you use XML Schema or Schematron which are still under development, the most recent version of
libxml2 is usually a good bet.

∙ The same applies to XPath, where a substantial number of bugs and memory leaks were fixed over time. If
you encounter crashes or memory leaks in XPath applications, try a more recent version of libxml2.

∙ For parsing and fixing broken HTML, lxml requires at least libxml2 2.6.21.

∙ For the normal tree handling, however, any libxml2 version starting with 2.6.20 should do.

Read the release notes of libxml2 and the release notes of libxslt to see when (or if) a specific bug has been fixed.

Where are the binary builds?

Binary builds are most often requested by users of Microsoft Windows. Two of the major design issues of this
operating system make it non-trivial for its users to build lxml: the lack of a pre-installed standard compiler and
the missing package management.

For recent lxml releases, PyPI provides community donated Windows binaries. Besides that, Christoph Gohlke
generously provides unofficial lxml binary builds for Windows that are usually very up to date. Consider using
them if you prefer a binary build over a signed official source release.

Why do I get errors about missing UCS4 symbols when installing lxml?

You are using a Python installation that was configured for a different internal Unicode representation than the
lxml package you are trying to install. CPython versions before 3.3 allowed to switch between two types at build

43

http://xmlsoft.org/news.html
http://xmlsoft.org/XSLT/news.html
http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml

Contributing

time: the 32 bit encoding UCS4 and the 16 bit encoding UCS2. Sadly, both are not compatible, so eggs and other
binary distributions can only support the one they were compiled with.

This means that you have to compile lxml from sources for your system. Note that you do not need Cython for
this, the lxml source distribution is directly compilable on both platform types. See the build instructions on how
to do this.

Contributing

Why is lxml not written in Python?

It almost is.

lxml is not written in plain Python, because it interfaces with two C libraries: libxml2 and libxslt. Accessing them
at the C-level is required for performance reasons.

However, to avoid writing plain C-code and caring too much about the details of built-in types and reference
counting, lxml is written in Cython, a superset of the Python language that translates to C-code. Chances are that
if you know Python, you can write code that Cython accepts. Again, the C-ish style used in the lxml code is just for
performance optimisations. If you want to contribute, don’t bother with the details, a Python implementation of
your contribution is better than none. And keep in mind that lxml’s flexible API often favours an implementation
of features in pure Python, without bothering with C-code at all. For example, the lxml.html package is written
entirely in Python.

Please contact the mailing list if you need any help.

How can I contribute?

If you find something that you would like lxml to do (or do better), then please tell us about it on the mailing list.
Patches are always appreciated, especially when accompanied by unit tests and documentation (doctests would be
great). See the tests subdirectories in the lxml source tree (below the src directory) and the ReST text files in
the doc directory.

We also have a list of missing features that we would like to implement but didn’t due to lack if time. If you find
the time, patches are very welcome.

Besides enhancing the code, there are a lot of places where you can help the project and its user base. You can

∙ spread the word and write about lxml. Many users (especially new Python users) have not yet heared
about lxml, although our user base is constantly growing. If you write your own blog and feel like saying
something about lxml, go ahead and do so. If we think your contribution or criticism is valuable to other
users, we may even put a link or a quote on the project page.

∙ provide code examples for the general usage of lxml or specific problems solved with lxml. Readable code
is a very good way of showing how a library can be used and what great things you can do with it. Again,
if we hear about it, we can set a link on the project page.

∙ work on the documentation. The web page is generated from a set of ReST text files. It is meant both as
a representative project page for lxml and as a site for documenting lxml’s API and usage. If you have
questions or an idea how to make it more readable and accessible while you are reading it, please send a
comment to the mailing list.

∙ enhance the web site. We put some work into making the web site usable, understandable and also easy
to find, but there’s always things that can be done better. You may notice that we are not top-ranked when
searching the web for “Python and XML”, so maybe you have an idea how to improve that.

44

http://www.cython.org/
http://docs.cython.org/docs/tutorial.html
http://lxml.de/mailinglist/
http://lxml.de/mailinglist/
http://docutils.sourceforge.net/rst.html
https://github.com/lxml/lxml/tree/master/doc
https://github.com/lxml/lxml/blob/master/IDEAS.txt
http://docutils.sourceforge.net/rst.html
https://github.com/lxml/lxml/tree/master/doc
http://lxml.de/mailinglist/

Bugs

∙ help with the tutorial. A tutorial is the most important stating point for new users, so it is important for us
to provide an easy to understand guide into lxml. As allo documentation, the tutorial is work in progress, so
we appreciate every helping hand.

∙ improve the docstrings. lxml uses docstrings to support Python’s integrated online help() function. How-
ever, sometimes these are not sufficient to grasp the details of the function in question. If you find such a
place, you can try to write up a better description and send it to the mailing list.

Bugs

My application crashes!

One of the goals of lxml is “no segfaults”, so if there is no clear warning in the documentation that you were doing
something potentially harmful, you have found a bug and we would like to hear about it. Please report this bug to
the mailing list. See the section on bug reporting to learn how to do that.

If your application (or e.g. your web container) uses threads, please see the FAQ section on threading to check if
you touch on one of the potential pitfalls.

In any case, try to reproduce the problem with the latest versions of libxml2 and libxslt. From time to time, bugs
and race conditions are found in these libraries, so a more recent version might already contain a fix for your
problem.

Remember: even if you see lxml appear in a crash stack trace, it is not necessarily lxml that caused the crash.

My application crashes on MacOS-X!

This was a common problem up to lxml 2.1.x. Since lxml 2.2, the only officially supported way to use it on
this platform is through a static build against freshly downloaded versions of libxml2 and libxslt. See the build
instructions for MacOS-X.

I think I have found a bug in lxml. What should I do?

First, you should look at the current developer changelog to see if this is a known problem that has already been
fixed in the master branch since the release you are using.

Also, the ’crash’ section above has a few good advices what to try to see if the problem is really in lxml - and not
in your setup. Believe it or not, that happens more often than you might think, especially when old libraries or
even multiple library versions are installed.

You should always try to reproduce the problem with the latest versions of libxml2 and libxslt - and make sure
they are used. lxml.etree can tell you what it runs with:

import sys
from lxml import etree

print("%-20s: %s" % (’Python’, sys.version_info))
print("%-20s: %s" % (’lxml.etree’, etree.LXML_VERSION))
print("%-20s: %s" % (’libxml used’, etree.LIBXML_VERSION))
print("%-20s: %s" % (’libxml compiled’, etree.LIBXML_COMPILED_VERSION))
print("%-20s: %s" % (’libxslt used’, etree.LIBXSLT_VERSION))
print("%-20s: %s" % (’libxslt compiled’, etree.LIBXSLT_COMPILED_VERSION))

45

http://lxml.de/mailinglist/
http://lxml.de/mailinglist/
https://github.com/lxml/lxml/blob/master/CHANGES.txt

How do I know a bug is really in lxml and not in libxml2? Threading

If you can figure that the problem is not in lxml but in the underlying libxml2 or libxslt, you can ask right on
the respective mailing lists, which may considerably reduce the time to find a fix or work-around. See the next
question for some hints on how to do that.

Otherwise, we would really like to hear about it. Please report it to the bug tracker or to the mailing list so that
we can fix it. It is very helpful in this case if you can come up with a short code snippet that demonstrates your
problem. If others can reproduce and see the problem, it is much easier for them to fix it - and maybe even easier
for you to describe it and get people convinced that it really is a problem to fix.

It is important that you always report the version of lxml, libxml2 and libxslt that you get from the code snippet
above. If we do not know the library versions you are using, we will ask back, so it will take longer for you to get
a helpful answer.

Since as a user of lxml you are likely a programmer, you might find this article on bug reports an interesting read.

How do I know a bug is really in lxml and not in libxml2?

A large part of lxml’s functionality is implemented by libxml2 and libxslt, so problems that you encounter may
be in one or the other. Knowing the right place to ask will reduce the time it takes to fix the problem, or to find a
work-around.

Both libxml2 and libxslt come with their own command line frontends, namely xmllint and xsltproc. If
you encounter problems with XSLT processing for specific stylesheets or with validation for specific schemas, try
to run the XSLT with xsltproc or the validation with xmllint respectively to find out if it fails there as well.
If it does, please report directly to the mailing lists of the respective project, namely:

∙ libxml2 mailing list

∙ libxslt mailing list

On the other hand, everything that seems to be related to Python code, including custom resolvers, custom XPath
functions, etc. is likely outside of the scope of libxml2/libxslt. If you encounter problems here or you are not sure
where there the problem may come from, please ask on the lxml mailing list first.

In any case, a good explanation of the problem including some simple test code and some input data will help us
(or the libxml2 developers) see and understand the problem, which largely increases your chance of getting help.
See the question above for a few hints on what is helpful here.

Threading

Can I use threads to concurrently access the lxml API?

Short answer: yes, if you use lxml 2.2 and later.

Since version 1.1, lxml frees the GIL (Python’s global interpreter lock) internally when parsing from disk and
memory, as long as you use either the default parser (which is replicated for each thread) or create a parser for
each thread yourself. lxml also allows concurrency during validation (RelaxNG and XMLSchema) and XSL
transformation. You can share RelaxNG, XMLSchema and XSLT objects between threads.

While you can also share parsers between threads, this will serialize the access to each of them, so it is better to
.copy() parsers or to just use the default parser if you do not need any special configuration. The same applies
to the XPath evaluators, which use an internal lock to protect their prepared evaluation contexts. It is therefore
best to use separate evaluator instances in threads.

Warning: Before lxml 2.2, and especially before 2.1, there were various issues when moving subtrees between

46

https://bugs.launchpad.net/lxml/
http://lxml.de/mailinglist/
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://mail.gnome.org/mailman/listinfo/xml
http://mail.gnome.org/mailman/listinfo/xslt

Does my program run faster if I use threads? Threading

different threads, or when applying XSLT objects from one thread to trees parsed or modified in another. If you
need code to run with older versions, you should generally avoid modifying trees in other threads than the one it
was generated in. Although this should work in many cases, there are certain scenarios where the termination of
a thread that parsed a tree can crash the application if subtrees of this tree were moved to other documents. You
should be on the safe side when passing trees between threads if you either

∙ do not modify these trees and do not move their elements to other trees, or

∙ do not terminate threads while the trees they parsed are still in use (e.g. by using a fixed size thread-pool or
long-running threads in processing chains)

Since lxml 2.2, even multi-thread pipelines are supported. However, note that it is more efficient to do all tree
work inside one thread, than to let multiple threads work on a tree one after the other. This is because trees inherit
state from the thread that created them, which must be maintained when the tree is modified inside another thread.

Does my program run faster if I use threads?

Depends. The best way to answer this is timing and profiling.

The global interpreter lock (GIL) in Python serializes access to the interpreter, so if the majority of your processing
is done in Python code (walking trees, modifying elements, etc.), your gain will be close to zero. The more of your
XML processing moves into lxml, however, the higher your gain. If your application is bound by XML parsing
and serialisation, or by very selective XPath expressions and complex XSLTs, your speedup on multi-processor
machines can be substantial.

See the question above to learn which operations free the GIL to support multi-threading.

Would my single-threaded program run faster if I turned off threading?

Possibly, yes. You can see for yourself by compiling lxml entirely without threading support. Pass the --without-threading
option to setup.py when building lxml from source. You can also build libxml2 without pthread support (--without-pthreads
option), which may add another bit of performance. Note that this will leave internal data structures entirely with-
out thread protection, so make sure you really do not use lxml outside of the main application thread in this
case.

Why can’t I reuse XSLT stylesheets in other threads?

Since later lxml 2.0 versions, you can do this. There is some overhead involved as the result document needs an
additional cleanup traversal when the input document and/or the stylesheet were created in other threads. However,
on a multi-processor machine, the gain of freeing the GIL easily covers this drawback.

If you need even the last bit of performance, consider keeping (a copy of) the stylesheet in thread-local storage,
and try creating the input document(s) in the same thread. And do not forget to benchmark your code to see if the
increased code complexity is really worth it.

My program crashes when run with mod_python/Pyro/Zope/Plone/...

These environments can use threads in a way that may not make it obvious when threads are created and what
happens in which thread. This makes it hard to ensure lxml’s threading support is used in a reliable way. Sadly, if
problems arise, they are as diverse as the applications, so it is difficult to provide any generally applicable solution.
Also, these environments are so complex that problems become hard to debug and even harder to reproduce in a

47

My program crashes when run with mod_python/Pyro/Zope/Plone/... Threading

predictable way. If you encounter crashes in one of these systems, but your code runs perfectly when started by
hand, the following gives you a few hints for possible approaches to solve your specific problem:

∙ make sure you use recent versions of libxml2, libxslt and lxml. The libxml2 developers keep fixing bugs in
each release, and lxml also tries to become more robust against possible pitfalls. So newer versions might
already fix your problem in a reliable way. Version 2.2 of lxml contains many improvements.

∙ make sure the library versions you installed are really used. Do not rely on what your operating system
tells you! Print the version constants in lxml.etree from within your runtime environment to make sure
it is the case. This is especially a problem under MacOS-X when newer library versions were installed in
addition to the outdated system libraries. Please read the bugs section regarding MacOS-X in this FAQ.

∙ if you use mod_python, try setting this option:

PythonInterpreter main_interpreter

There was a discussion on the mailing list about this problem:

http://comments.gmane.org/gmane.comp.python.lxml.devel/2942

∙ in a threaded environment, try to initially import lxml.etree from the main application thread instead of
doing first-time imports separately in each spawned worker thread. If you cannot control the thread spawn-
ing of your web/application server, an import of lxml.etree in sitecustomize.py or usercustomize.py
may still do the trick.

∙ compile lxml without threading support by running setup.py with the --without-threading op-
tion. While this might be slower in certain scenarios on multi-processor systems, it might also keep your
application from crashing, which should be worth more to you than peek performance. Remember that lxml
is fast anyway, so concurrency may not even be worth it.

∙ look out for fancy XSLT stuff like foreign document access or passing in subtrees trough XSLT variables.
This might or might not work, depending on your specific usage. Again, later versions of lxml and libxslt
provide safer support here.

∙ try copying trees at suspicious places in your code and working with those instead of a tree shared between
threads. Note that the copying must happen inside the target thread to be effective, not in the thread that
created the tree. Serialising in one thread and parsing in another is also a simple (and fast) way of separating
thread contexts.

∙ try keeping thread-local copies of XSLT stylesheets, i.e. one per thread, instead of sharing one. Also see
the question above.

∙ you can try to serialise suspicious parts of your code with explicit thread locks, thus disabling the concur-
rency of the runtime system.

∙ report back on the mailing list to see if there are other ways to work around your specific problems. Do not
forget to report the version numbers of lxml, libxml2 and libxslt you are using (see the question on reporting
a bug).

Note that most of these options will degrade performance and/or your code quality. If you are unsure what to do,
please ask on the mailing list.

48

http://comments.gmane.org/gmane.comp.python.lxml.devel/2942

Parsing and Serialisation

Parsing and Serialisation

Why doesn’t the pretty_print option reformat my XML output?

Pretty printing (or formatting) an XML document means adding white space to the content. These modifications
are harmless if they only impact elements in the document that do not carry (text) data. They corrupt your data if
they impact elements that contain data. If lxml cannot distinguish between whitespace and data, it will not alter
your data. Whitespace is therefore only added between nodes that do not contain data. This is always the case for
trees constructed element-by-element, so no problems should be expected here. For parsed trees, a good way to
assure that no conflicting whitespace is left in the tree is the remove_blank_text option:

>>> parser = etree.XMLParser(remove_blank_text=True)
>>> tree = etree.parse(filename, parser)

This will allow the parser to drop blank text nodes when constructing the tree. If you now call a serialization
function to pretty print this tree, lxml can add fresh whitespace to the XML tree to indent it.

Note that the remove_blank_text option also uses a heuristic if it has no definite knowledge about the
document’s ignorable whitespace. It will keep blank text nodes that appear after non-blank text nodes at the same
level. This is to prevent document-style XML from loosing content.

The HTMLParser has this structural knowledge built-in, which means that most whitespace that appears between
tags in HTML documents will not be removed by this option, except in places where it is truly ignorable, e.g. in
the page header, between table structure tags, etc. Therefore, it is also safe to use this option with the HTMLParser,
as it will keep content like the following intact (i.e. it will not remove the space that separates the two words):

<p>some text</p>

If you want to be sure all blank text is removed from an XML document (or just more blank text than the parser
does by itself), you have to use either a DTD to tell the parser which whitespace it can safely ignore, or remove
the ignorable whitespace manually after parsing, e.g. by setting all tail text to None:

for element in root.iter():
element.tail = None

Fredrik Lundh also has a Python-level function for indenting XML by appending whitespace to tags. It can be
found on his element library recipe page.

Why can’t lxml parse my XML from unicode strings?

First of all, XML is explicitly defined as a stream of bytes. It’s not Unicode text. Take a look at the XML
specification, it’s all about byte sequences and how to map them to text and structure. That leads to rule number
one: do not decode your XML data yourself. That’s a part of the work of an XML parser, and it does it very well.
Just pass it your data as a plain byte stream, it will always do the right thing, by specification.

This also includes not opening XML files in text mode. Make sure you always use binary mode, or, even better,
pass the file path into lxml’s parse() function to let it do the file opening, reading and closing itself. This is the
most simple and most efficient way to do it.

That being said, lxml can read Python unicode strings and even tries to support them if libxml2 does not. This is
because there is one valid use case for parsing XML from text strings: literal XML fragments in source code.

However, if the unicode string declares an XML encoding internally (<?xml encoding="..."?>), parsing
is bound to fail, as this encoding is almost certainly not the real encoding used in Python unicode. The same is true
for HTML unicode strings that contain charset meta tags, although the problems may be more subtle here. The
libxml2 HTML parser may not be able to parse the meta tags in broken HTML and may end up ignoring them, so

49

http://effbot.org/zone/element-lib.htm
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

Can lxml parse from file objects opened in unicode/text mode? Parsing and Serialisation

even if parsing succeeds, later handling may still fail with character encoding errors. Therefore, parsing HTML
from unicode strings is a much saner thing to do than parsing XML from unicode strings.

Note that Python uses different encodings for unicode on different platforms, so even specifying the real internal
unicode encoding is not portable between Python interpreters. Don’t do it.

Python unicode strings with XML data that carry encoding information are broken. lxml will not parse them. You
must provide parsable data in a valid encoding.

Can lxml parse from file objects opened in unicode/text mode?

Technically, yes. However, you likely do not want to do that, because it is extremely inefficient. The text encoding
that libxml2 uses internally is UTF-8, so parsing from a Unicode file means that Python first reads a chunk of
data from the file, then decodes it into a new buffer, and then copies it into a new unicode string object, just to let
libxml2 make yet another copy while encoding it down into UTF-8 in order to parse it. It’s clear that this involves
a lot more recoding and copying than when parsing straight from the bytes that the file contains.

If you really know the encoding better than the parser (e.g. when parsing HTML that lacks a content declaration),
then instead of passing an encoding parameter into the file object when opening it, create a new instance of an
XMLParser or HTMLParser and pass the encoding into its constructor. Afterwards, use that parser for parsing, e.g.
by passing it into the etree.parse(file, parser) function. Remember to open the file in binary mode
(mode=“rb”), or, if possible, prefer passing the file path directly into parse() instead of an opened Python file
object.

What is the difference between str(xslt(doc)) and xslt(doc).write() ?

The str() implementation of the XSLTResultTree class (a subclass of the ElementTree class) knows about the
output method chosen in the stylesheet (xsl:output), write() doesn’t. If you call write(), the result will be a normal
XML tree serialization in the requested encoding. Calling this method may also fail for XSLT results that are not
XML trees (e.g. string results).

If you call str(), it will return the serialized result as specified by the XSL transform. This correctly serializes
string results to encoded Python strings and honours xsl:output options like indent. This almost certainly
does what you want, so you should only use write() if you are sure that the XSLT result is an XML tree and
you want to override the encoding and indentation options requested by the stylesheet.

Why can’t I just delete parents or clear the root node in iterparse()?

The iterparse() implementation is based on the libxml2 parser. It requires the tree to be intact to finish
parsing. If you delete or modify parents of the current node, chances are you modify the structure in a way that
breaks the parser. Normally, this will result in a segfault. Please refer to the iterparse section of the lxml API
documentation to find out what you can do and what you can’t do.

How do I output null characters in XML text?

Don’t. What you would produce is not well-formed XML. XML parsers will refuse to parse a document that
contains null characters. The right way to embed binary data in XML is using a text encoding such as uuencode
or base64.

50

Is lxml vulnerable to XML bombs? Parsing and Serialisation

Is lxml vulnerable to XML bombs?

This has nothing to do with lxml itself, only with the parser of libxml2. Since libxml2 version 2.7, the parser
imposes hard security limits on input documents to prevent DoS attacks with forged input data. Since lxml
2.2.1, you can disable these limits with the huge_tree parser option if you need to parse really large, trusted
documents. All lxml versions will leave these restrictions enabled by default.

Note that libxml2 versions of the 2.6 series do not restrict their parser and are therefore vulnerable to DoS attacks.

Note also that these “hard limits” may still be high enough to allow for excessive resource usage in a given use
case. They are compile time modifiable, so building your own library versions will allow you to change the limits
to your own needs. Also see the next question.

How do I use lxml safely as a web-service endpoint?

XML based web-service endpoints are generally subject to several types of attacks if they allow some kind of
untrusted input. From the point of view of the underlying XML tool, the most obvious attacks try to send a
relatively small amount of data that induces a comparatively large resource consumption on the receiver side.

First of all, make sure network access is not enabled for the XML parser that you use for parsing untrusted content
and that it is not configured to load external DTDs. Otherwise, attackers can try to trick the parser into an attempt
to load external resources that are overly slow or impossible to retrieve, thus wasting time and other valuable
resources on your server such as socket connections. Note that you can register your own document loader in
lxml, which allows for fine-grained control over any read access to resources.

Some of the most famous excessive content expansion attacks use XML entity references. Luckily, entity ex-
pansion is mostly useless for the data commonly sent through web services and can simply be disabled, which
rules out several types of denial of service attacks at once. This also involves an attack that reads local files from
the server, as XML entities can be defined to expand into their content. Consequently, version 1.2 of the SOAP
standard explicitly disallows entity references in the XML stream.

To disable entity expansion, use an XML parser that is configured with the option resolve_entities=False.
Then, after (or while) parsing the document, use root.iter(etree.Entity) to recursively search for entity
references. If it contains any, reject the entire input document with a suitable error response. In lxml 3.x, you can
also use the new DTD introspection API to apply your own restrictions on input documents.

Another attack to consider is compression bombs. If you allow compressed input into your web service, attackers
can try to send well forged highly repetitive and thus very well compressing input that unpacks into a very large
XML document in your server’s main memory, potentially a thousand times larger than the compressed input data.

As a counter measure, either disable compressed input for your web server, at least for untrusted sources, or use
incremental parsing with iterparse() instead of parsing the whole input document into memory in one shot.
That allows you to enforce suitable limits on the input by applying semantic checks that detect and prevent an
illegitimate use of your service. If possible, you can also use this to reduce the amount of data that you need
to keep in memory while parsing the document, thus further reducing the possibility of an attacker to trick your
system into excessive resource usage.

Finally, please be aware that XPath suffers from the same vulnerability as SQL when it comes to content injection.
The obvious fix is to not build any XPath expressions via string formatting or concatenation when the parame-
ters may come from untrusted sources, and instead use XPath variables, which safely expose their values to the
evaluation engine.

The defusedxml package comes with an example setup and a wrapper API for lxml that applies certain counter
measures internally.

51

https://bitbucket.org/tiran/defusedxml

XPath and Document Traversal

XPath and Document Traversal

What are the findall() and xpath() methods on Element(Tree)?

findall() is part of the original ElementTree API. It supports a simple subset of the XPath language, without
predicates, conditions and other advanced features. It is very handy for finding specific tags in a tree. Another
important difference is namespace handling, which uses the {namespace}tagname notation. This is not sup-
ported by XPath. The findall, find and findtext methods are compatible with other ElementTree implementations
and allow writing portable code that runs on ElementTree, cElementTree and lxml.etree.

xpath(), on the other hand, supports the complete power of the XPath language, including predicates, XPath
functions and Python extension functions. The syntax is defined by the XPath specification. If you need the
expressiveness and selectivity of XPath, the xpath() method, the XPath class and the XPathEvaluator are
the best choice.

Why doesn’t findall() support full XPath expressions?

It was decided that it is more important to keep compatibility with ElementTree to simplify code migration be-
tween the libraries. The main difference compared to XPath is the {namespace}tagname notation used in
findall(), which is not valid XPath.

ElementTree and lxml.etree use the same implementation, which assures 100% compatibility. Note that findall()
is so fast in lxml that a native implementation would not bring any performance benefits.

How can I find out which namespace prefixes are used in a document?

You can traverse the document (root.iter()) and collect the prefix attributes from all Elements into a set.
However, it is unlikely that you really want to do that. You do not need these prefixes, honestly. You only need
the namespace URIs. All namespace comparisons use these, so feel free to make up your own prefixes when you
use XPath expressions or extension functions.

The only place where you might consider specifying prefixes is the serialization of Elements that were created
through the API. Here, you can specify a prefix mapping through the nsmap argument when creating the root
Element. Its children will then inherit this prefix for serialization.

How can I specify a default namespace for XPath expressions?

You can’t. In XPath, there is no such thing as a default namespace. Just use an arbitrary prefix and let the
namespace dictionary of the XPath evaluators map it to your namespace. See also the question above.

52

http://effbot.org/zone/element-index.htm
http://effbot.org/zone/element-xpath.htm
http://www.w3.org/TR/xpath
http://effbot.org/zone/element-index.htm

Part II

Developing with lxml

53

Chapter 7

The lxml.etree Tutorial

Author: Stefan Behnel

This is a tutorial on XML processing with lxml.etree. It briefly overviews the main concepts of the Element-
Tree API, and some simple enhancements that make your life as a programmer easier.

For a complete reference of the API, see the generated API documentation.

A common way to import lxml.etree is as follows:

>>> from lxml import etree

If your code only uses the ElementTree API and does not rely on any functionality that is specific to lxml.etree,
you can also use (any part of) the following import chain as a fall-back to the original ElementTree:

try:
from lxml import etree
print("running with lxml.etree")

except ImportError:
try:

Python 2.5
import xml.etree.cElementTree as etree
print("running with cElementTree on Python 2.5+")

except ImportError:
try:

Python 2.5
import xml.etree.ElementTree as etree
print("running with ElementTree on Python 2.5+")

except ImportError:
try:

normal cElementTree install
import cElementTree as etree
print("running with cElementTree")

except ImportError:
try:
normal ElementTree install
import elementtree.ElementTree as etree
print("running with ElementTree")

except ImportError:
print("Failed to import ElementTree from any known place")

54

http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm#documentation
api/index.html

The Element class

To aid in writing portable code, this tutorial makes it clear in the examples which part of the presented API is an
extension of lxml.etree over the original ElementTree API, as defined by Fredrik Lundh’s ElementTree library.

The Element class

An Element is the main container object for the ElementTree API. Most of the XML tree functionality is ac-
cessed through this class. Elements are easily created through the Element factory:

>>> root = etree.Element("root")

The XML tag name of elements is accessed through the tag property:

>>> print(root.tag)
root

Elements are organised in an XML tree structure. To create child elements and add them to a parent element, you
can use the append() method:

>>> root.append(etree.Element("child1"))

However, this is so common that there is a shorter and much more efficient way to do this: the SubElement
factory. It accepts the same arguments as the Element factory, but additionally requires the parent as first
argument:

>>> child2 = etree.SubElement(root, "child2")
>>> child3 = etree.SubElement(root, "child3")

To see that this is really XML, you can serialise the tree you have created:

>>> print(etree.tostring(root, pretty_print=True))
<root>

<child1/>
<child2/>
<child3/>

</root>

Elements are lists

To make the access to these subelements easy and straight forward, elements mimic the behaviour of normal
Python lists as closely as possible:

>>> child = root[0]
>>> print(child.tag)
child1

>>> print(len(root))
3

>>> root.index(root[1]) # lxml.etree only!
1

>>> children = list(root)

>>> for child in root:
... print(child.tag)

55

http://effbot.org/zone/element-index.htm#documentation
http://effbot.org/zone/element-index.htm

Elements are lists The Element class

child1
child2
child3

>>> root.insert(0, etree.Element("child0"))
>>> start = root[:1]
>>> end = root[-1:]

>>> print(start[0].tag)
child0
>>> print(end[0].tag)
child3

Prior to ElementTree 1.3 and lxml 2.0, you could also check the truth value of an Element to see if it has children,
i.e. if the list of children is empty:

if root: # this no longer works!
print("The root element has children")

This is no longer supported as people tend to expect that a “something” evaluates to True and expect Elements to
be “something”, may they have children or not. So, many users find it surprising that any Element would evaluate
to False in an if-statement like the above. Instead, use len(element), which is both more explicit and less
error prone.

>>> print(etree.iselement(root)) # test if it’s some kind of Element
True
>>> if len(root): # test if it has children
... print("The root element has children")
The root element has children

There is another important case where the behaviour of Elements in lxml (in 2.0 and later) deviates from that of
lists and from that of the original ElementTree (prior to version 1.3 or Python 2.7/3.2):

>>> for child in root:
... print(child.tag)
child0
child1
child2
child3
>>> root[0] = root[-1] # this moves the element in lxml.etree!
>>> for child in root:
... print(child.tag)
child3
child1
child2

In this example, the last element is moved to a different position, instead of being copied, i.e. it is automatically
removed from its previous position when it is put in a different place. In lists, objects can appear in multiple
positions at the same time, and the above assignment would just copy the item reference into the first position, so
that both contain the exact same item:

>>> l = [0, 1, 2, 3]
>>> l[0] = l[-1]
>>> l
[3, 1, 2, 3]

Note that in the original ElementTree, a single Element object can sit in any number of places in any number of
trees, which allows for the same copy operation as with lists. The obvious drawback is that modifications to such

56

Elements carry attributes as a dict The Element class

an Element will apply to all places where it appears in a tree, which may or may not be intended.

The upside of this difference is that an Element in lxml.etree always has exactly one parent, which can be queried
through the getparent() method. This is not supported in the original ElementTree.

>>> root is root[0].getparent() # lxml.etree only!
True

If you want to copy an element to a different position in lxml.etree, consider creating an independent deep copy
using the copy module from Python’s standard library:

>>> from copy import deepcopy

>>> element = etree.Element("neu")
>>> element.append(deepcopy(root[1]))

>>> print(element[0].tag)
child1
>>> print([c.tag for c in root])
[’child3’, ’child1’, ’child2’]

The siblings (or neighbours) of an element are accessed as next and previous elements:

>>> root[0] is root[1].getprevious() # lxml.etree only!
True
>>> root[1] is root[0].getnext() # lxml.etree only!
True

Elements carry attributes as a dict

XML elements support attributes. You can create them directly in the Element factory:

>>> root = etree.Element("root", interesting="totally")
>>> etree.tostring(root)
b’<root interesting="totally"/>’

Attributes are just unordered name-value pairs, so a very convenient way of dealing with them is through the
dictionary-like interface of Elements:

>>> print(root.get("interesting"))
totally

>>> print(root.get("hello"))
None
>>> root.set("hello", "Huhu")
>>> print(root.get("hello"))
Huhu

>>> etree.tostring(root)
b’<root interesting="totally" hello="Huhu"/>’

>>> sorted(root.keys())
[’hello’, ’interesting’]

>>> for name, value in sorted(root.items()):
... print(’%s = %r’ % (name, value))
hello = ’Huhu’

57

Elements contain text The Element class

interesting = ’totally’

For the cases where you want to do item lookup or have other reasons for getting a ’real’ dictionary-like object,
e.g. for passing it around, you can use the attrib property:

>>> attributes = root.attrib

>>> print(attributes["interesting"])
totally
>>> print(attributes.get("no-such-attribute"))
None

>>> attributes["hello"] = "Guten Tag"
>>> print(attributes["hello"])
Guten Tag
>>> print(root.get("hello"))
Guten Tag

Note that attrib is a dict-like object backed by the Element itself. This means that any changes to the Element
are reflected in attrib and vice versa. It also means that the XML tree stays alive in memory as long as the
attrib of one of its Elements is in use. To get an independent snapshot of the attributes that does not depend on
the XML tree, copy it into a dict:

>>> d = dict(root.attrib)
>>> sorted(d.items())
[(’hello’, ’Guten Tag’), (’interesting’, ’totally’)]

Elements contain text

Elements can contain text:

>>> root = etree.Element("root")
>>> root.text = "TEXT"

>>> print(root.text)
TEXT

>>> etree.tostring(root)
b’<root>TEXT</root>’

In many XML documents (data-centric documents), this is the only place where text can be found. It is encapsu-
lated by a leaf tag at the very bottom of the tree hierarchy.

However, if XML is used for tagged text documents such as (X)HTML, text can also appear between different
elements, right in the middle of the tree:

<html><body>Hello
World</body></html>

Here, the
 tag is surrounded by text. This is often referred to as document-style or mixed-content XML.
Elements support this through their tail property. It contains the text that directly follows the element, up to the
next element in the XML tree:

>>> html = etree.Element("html")
>>> body = etree.SubElement(html, "body")
>>> body.text = "TEXT"

>>> etree.tostring(html)

58

Using XPath to find text The Element class

b’<html><body>TEXT</body></html>’

>>> br = etree.SubElement(body, "br")
>>> etree.tostring(html)
b’<html><body>TEXT
</body></html>’

>>> br.tail = "TAIL"
>>> etree.tostring(html)
b’<html><body>TEXT
TAIL</body></html>’

The two properties .text and .tail are enough to represent any text content in an XML document. This way,
the ElementTree API does not require any special text nodes in addition to the Element class, that tend to get in
the way fairly often (as you might know from classic DOM APIs).

However, there are cases where the tail text also gets in the way. For example, when you serialise an Element from
within the tree, you do not always want its tail text in the result (although you would still want the tail text of its
children). For this purpose, the tostring() function accepts the keyword argument with_tail:

>>> etree.tostring(br)
b’
TAIL’
>>> etree.tostring(br, with_tail=False) # lxml.etree only!
b’
’

If you want to read only the text, i.e. without any intermediate tags, you have to recursively concatenate all text
and tail attributes in the correct order. Again, the tostring() function comes to the rescue, this time using
the method keyword:

>>> etree.tostring(html, method="text")
b’TEXTTAIL’

Using XPath to find text

Another way to extract the text content of a tree is XPath, which also allows you to extract the separate text chunks
into a list:

>>> print(html.xpath("string()")) # lxml.etree only!
TEXTTAIL
>>> print(html.xpath("//text()")) # lxml.etree only!
[’TEXT’, ’TAIL’]

If you want to use this more often, you can wrap it in a function:

>>> build_text_list = etree.XPath("//text()") # lxml.etree only!
>>> print(build_text_list(html))
[’TEXT’, ’TAIL’]

Note that a string result returned by XPath is a special ’smart’ object that knows about its origins. You can ask it
where it came from through its getparent() method, just as you would with Elements:

>>> texts = build_text_list(html)
>>> print(texts[0])
TEXT
>>> parent = texts[0].getparent()
>>> print(parent.tag)
body

>>> print(texts[1])

59

http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-1312295772
http://www.w3.org/TR/DOM-Level-3-Core/core.html

Tree iteration The Element class

TAIL
>>> print(texts[1].getparent().tag)
br

You can also find out if it’s normal text content or tail text:

>>> print(texts[0].is_text)
True
>>> print(texts[1].is_text)
False
>>> print(texts[1].is_tail)
True

While this works for the results of the text() function, lxml will not tell you the origin of a string value that
was constructed by the XPath functions string() or concat():

>>> stringify = etree.XPath("string()")
>>> print(stringify(html))
TEXTTAIL
>>> print(stringify(html).getparent())
None

Tree iteration

For problems like the above, where you want to recursively traverse the tree and do something with its elements,
tree iteration is a very convenient solution. Elements provide a tree iterator for this purpose. It yields elements in
document order, i.e. in the order their tags would appear if you serialised the tree to XML:

>>> root = etree.Element("root")
>>> etree.SubElement(root, "child").text = "Child 1"
>>> etree.SubElement(root, "child").text = "Child 2"
>>> etree.SubElement(root, "another").text = "Child 3"

>>> print(etree.tostring(root, pretty_print=True))
<root>

<child>Child 1</child>
<child>Child 2</child>
<another>Child 3</another>

</root>

>>> for element in root.iter():
... print("%s - %s" % (element.tag, element.text))
root - None
child - Child 1
child - Child 2
another - Child 3

If you know you are only interested in a single tag, you can pass its name to iter() to have it filter for you.
Starting with lxml 3.0, you can also pass more than one tag to intercept on multiple tags during iteration.

>>> for element in root.iter("child"):
... print("%s - %s" % (element.tag, element.text))
child - Child 1
child - Child 2

>>> for element in root.iter("another", "child"):

60

Serialisation The Element class

... print("%s - %s" % (element.tag, element.text))
child - Child 1
child - Child 2
another - Child 3

By default, iteration yields all nodes in the tree, including ProcessingInstructions, Comments and Entity instances.
If you want to make sure only Element objects are returned, you can pass the Element factory as tag parameter:

>>> root.append(etree.Entity("#234"))
>>> root.append(etree.Comment("some comment"))

>>> for element in root.iter():
... if isinstance(element.tag, basestring):
... print("%s - %s" % (element.tag, element.text))
... else:
... print("SPECIAL: %s - %s" % (element, element.text))
root - None
child - Child 1
child - Child 2
another - Child 3
SPECIAL: ê - ê
SPECIAL: <!--some comment--> - some comment

>>> for element in root.iter(tag=etree.Element):
... print("%s - %s" % (element.tag, element.text))
root - None
child - Child 1
child - Child 2
another - Child 3

>>> for element in root.iter(tag=etree.Entity):
... print(element.text)
ê

Note that passing a wildcard "*" tag name will also yield all Element nodes (and only elements).

In lxml.etree, elements provide further iterators for all directions in the tree: children, parents (or rather ancestors)
and siblings.

Serialisation

Serialisation commonly uses the tostring() function that returns a string, or the ElementTree.write()
method that writes to a file, a file-like object, or a URL (via FTP PUT or HTTP POST). Both calls accept the
same keyword arguments like pretty_print for formatted output or encoding to select a specific output
encoding other than plain ASCII:

>>> root = etree.XML(’<root><a></root>’)

>>> etree.tostring(root)
b’<root><a></root>’

>>> print(etree.tostring(root, xml_declaration=True))
<?xml version=’1.0’ encoding=’ASCII’?>
<root><a></root>

>>> print(etree.tostring(root, encoding=’iso-8859-1’))

61

Serialisation The Element class

<?xml version=’1.0’ encoding=’iso-8859-1’?>
<root><a></root>

>>> print(etree.tostring(root, pretty_print=True))
<root>

<a>

</root>

Note that pretty printing appends a newline at the end.

In lxml 2.0 and later (as well as ElementTree 1.3), the serialisation functions can do more than XML serialisation.
You can serialise to HTML or extract the text content by passing the method keyword:

>>> root = etree.XML(
... ’<html><head/><body><p>Hello
World</p></body></html>’)

>>> etree.tostring(root) # default: method = ’xml’
b’<html><head/><body><p>Hello
World</p></body></html>’

>>> etree.tostring(root, method=’xml’) # same as above
b’<html><head/><body><p>Hello
World</p></body></html>’

>>> etree.tostring(root, method=’html’)
b’<html><head></head><body><p>Hello
World</p></body></html>’

>>> print(etree.tostring(root, method=’html’, pretty_print=True))
<html>
<head></head>
<body><p>Hello
World</p></body>
</html>

>>> etree.tostring(root, method=’text’)
b’HelloWorld’

As for XML serialisation, the default encoding for plain text serialisation is ASCII:

>>> br = next(root.iter(’br’)) # get first result of iteration
>>> br.tail = u’W\xf6rld’

>>> etree.tostring(root, method=’text’) # doctest: +ELLIPSIS
Traceback (most recent call last):

...
UnicodeEncodeError: ’ascii’ codec can’t encode character u’\xf6’ ...

>>> etree.tostring(root, method=’text’, encoding="UTF-8")
b’HelloW\xc3\xb6rld’

Here, serialising to a Python unicode string instead of a byte string might become handy. Just pass the name
’unicode’ as encoding:

>>> etree.tostring(root, encoding=’unicode’, method=’text’)
u’HelloW\xf6rld’

The W3C has a good article about the Unicode character set and character encodings.

62

http://www.w3.org/International/tutorials/tutorial-char-enc/

Parsing from strings and files

The ElementTree class

An ElementTree is mainly a document wrapper around a tree with a root node. It provides a couple of methods
for serialisation and general document handling.

>>> root = etree.XML(’’’\
... <?xml version="1.0"?>
... <!DOCTYPE root SYSTEM "test" [<!ENTITY tasty "parsnips">]>
... <root>
... <a>&tasty;
... </root>
... ’’’)

>>> tree = etree.ElementTree(root)
>>> print(tree.docinfo.xml_version)
1.0
>>> print(tree.docinfo.doctype)
<!DOCTYPE root SYSTEM "test">

An ElementTree is also what you get back when you call the parse() function to parse files or file-like
objects (see the parsing section below).

One of the important differences is that the ElementTree class serialises as a complete document, as opposed
to a single Element. This includes top-level processing instructions and comments, as well as a DOCTYPE and
other DTD content in the document:

>>> print(etree.tostring(tree)) # lxml 1.3.4 and later
<!DOCTYPE root SYSTEM "test" [
<!ENTITY tasty "parsnips">
]>
<root>

<a>parsnips
</root>

In the original xml.etree.ElementTree implementation and in lxml up to 1.3.3, the output looks the same as when
serialising only the root Element:

>>> print(etree.tostring(tree.getroot()))
<root>

<a>parsnips
</root>

This serialisation behaviour has changed in lxml 1.3.4. Before, the tree was serialised without DTD content, which
made lxml loose DTD information in an input-output cycle.

Parsing from strings and files

lxml.etree supports parsing XML in a number of ways and from all important sources, namely strings, files,
URLs (http/ftp) and file-like objects. The main parse functions are fromstring() and parse(), both called
with the source as first argument. By default, they use the standard parser, but you can always pass a different
parser as second argument.

63

The fromstring() function Parsing from strings and files

The fromstring() function

The fromstring() function is the easiest way to parse a string:

>>> some_xml_data = "<root>data</root>"

>>> root = etree.fromstring(some_xml_data)
>>> print(root.tag)
root
>>> etree.tostring(root)
b’<root>data</root>’

The XML() function

The XML() function behaves like the fromstring() function, but is commonly used to write XML literals
right into the source:

>>> root = etree.XML("<root>data</root>")
>>> print(root.tag)
root
>>> etree.tostring(root)
b’<root>data</root>’

There is also a corresponding function HTML() for HTML literals.

The parse() function

The parse() function is used to parse from files and file-like objects.

As an example of such a file-like object, the following code uses the BytesIO class for reading from a string
instead of an external file. That class comes from the io module in Python 2.6 and later. In older Python
versions, you will have to use the StringIO class from the StringIO module. However, in real life, you
would obviously avoid doing this all together and use the string parsing functions above.

>>> some_file_like_object = BytesIO("<root>data</root>")

>>> tree = etree.parse(some_file_like_object)

>>> etree.tostring(tree)
b’<root>data</root>’

Note that parse() returns an ElementTree object, not an Element object as the string parser functions:

>>> root = tree.getroot()
>>> print(root.tag)
root
>>> etree.tostring(root)
b’<root>data</root>’

The reasoning behind this difference is that parse() returns a complete document from a file, while the string
parsing functions are commonly used to parse XML fragments.

The parse() function supports any of the following sources:

∙ an open file object (make sure to open it in binary mode)

64

Parser objects Parsing from strings and files

∙ a file-like object that has a .read(byte_count) method returning a byte string on each call

∙ a filename string

∙ an HTTP or FTP URL string

Note that passing a filename or URL is usually faster than passing an open file or file-like object. However, the
HTTP/FTP client in libxml2 is rather simple, so things like HTTP authentication require a dedicated URL request
library, e.g. urllib2 or request. These libraries usually provide a file-like object for the result that you can
parse from while the response is streaming in.

Parser objects

By default, lxml.etree uses a standard parser with a default setup. If you want to configure the parser, you
can create a you instance:

>>> parser = etree.XMLParser(remove_blank_text=True) # lxml.etree only!

This creates a parser that removes empty text between tags while parsing, which can reduce the size of the tree and
avoid dangling tail text if you know that whitespace-only content is not meaningful for your data. An example:

>>> root = etree.XML("<root> <a/> </root>", parser)

>>> etree.tostring(root)
b’<root><a/> </root>’

Note that the whitespace content inside the tag was not removed, as content at leaf elements tends to be data
content (even if blank). You can easily remove it in an additional step by traversing the tree:

>>> for element in root.iter("*"):
... if element.text is not None and not element.text.strip():
... element.text = None

>>> etree.tostring(root)
b’<root><a/></root>’

See help(etree.XMLParser) to find out about the available parser options.

Incremental parsing

lxml.etree provides two ways for incremental step-by-step parsing. One is through file-like objects, where it
calls the read() method repeatedly. This is best used where the data arrives from a source like urllib or any
other file-like object that can provide data on request. Note that the parser will block and wait until data becomes
available in this case:

>>> class DataSource:
... data = [b"<roo", b"t><", b"a/", b"><", b"/root>"]
... def read(self, requested_size):
... try:
... return self.data.pop(0)
... except IndexError:
... return b’’

>>> tree = etree.parse(DataSource())

>>> etree.tostring(tree)

65

Event-driven parsing Parsing from strings and files

b’<root><a/></root>’

The second way is through a feed parser interface, given by the feed(data) and close() methods:

>>> parser = etree.XMLParser()

>>> parser.feed("<roo")
>>> parser.feed("t><")
>>> parser.feed("a/")
>>> parser.feed("><")
>>> parser.feed("/root>")

>>> root = parser.close()

>>> etree.tostring(root)
b’<root><a/></root>’

Here, you can interrupt the parsing process at any time and continue it later on with another call to the feed()
method. This comes in handy if you want to avoid blocking calls to the parser, e.g. in frameworks like Twisted,
or whenever data comes in slowly or in chunks and you want to do other things while waiting for the next chunk.

After calling the close() method (or when an exception was raised by the parser), you can reuse the parser by
calling its feed() method again:

>>> parser.feed("<root/>")
>>> root = parser.close()
>>> etree.tostring(root)
b’<root/>’

Event-driven parsing

Sometimes, all you need from a document is a small fraction somewhere deep inside the tree, so parsing the whole
tree into memory, traversing it and dropping it can be too much overhead. lxml.etree supports this use case
with two event-driven parser interfaces, one that generates parser events while building the tree (iterparse),
and one that does not build the tree at all, and instead calls feedback methods on a target object in a SAX-like
fashion.

Here is a simple iterparse() example:

>>> some_file_like = BytesIO("<root><a>data</root>")

>>> for event, element in etree.iterparse(some_file_like):
... print("%s, %4s, %s" % (event, element.tag, element.text))
end, a, data
end, root, None

By default, iterparse() only generates events when it is done parsing an element, but you can control this
through the events keyword argument:

>>> some_file_like = BytesIO("<root><a>data</root>")

>>> for event, element in etree.iterparse(some_file_like,
... events=("start", "end")):
... print("%5s, %4s, %s" % (event, element.tag, element.text))
start, root, None
start, a, data

end, a, data

66

Event-driven parsing Parsing from strings and files

end, root, None

Note that the text, tail and children of an Element are not necessarily there yet when receiving the start event.
Only the end event guarantees that the Element has been parsed completely.

It also allows to .clear() or modify the content of an Element to save memory. So if you parse a large tree and
you want to keep memory usage small, you should clean up parts of the tree that you no longer need:

>>> some_file_like = BytesIO(
... "<root><a>data<a></root>")

>>> for event, element in etree.iterparse(some_file_like):
... if element.tag == ’b’:
... print(element.text)
... elif element.tag == ’a’:
... print("** cleaning up the subtree")
... element.clear()
data

** cleaning up the subtree
None

** cleaning up the subtree

A very important use cases for iterparse() is parsing large generated XML files, e.g. database dumps. Most
often, these XML formats only have one main data item element that hangs directly below the root node and that
is repeated thousands of times. In this case, it is best practice to let lxml.etree do the tree building and to only
intercept exactly on this one Element, using the normal tree API for data extraction.

>>> xml_file = BytesIO(’’’\
... <root>
... <a>ABC<c>abc</c>
... <a>MORE DATA<c>more data</c>
... <a>XYZ<c>xyz</c>
... </root>’’’)

>>> for _, element in etree.iterparse(xml_file, tag=’a’):
... print(’%s -- %s’ % (element.findtext(’b’), element[1].text))
... element.clear()
ABC -- abc
MORE DATA -- more data
XYZ -- xyz

If, for some reason, building the tree is not desired at all, the target parser interface of lxml.etree can be
used. It creates SAX-like events by calling the methods of a target object. By implementing some or all of these
methods, you can control which events are generated:

>>> class ParserTarget:
... events = []
... close_count = 0
... def start(self, tag, attrib):
... self.events.append(("start", tag, attrib))
... def close(self):
... events, self.events = self.events, []
... self.close_count += 1
... return events

>>> parser_target = ParserTarget()

>>> parser = etree.XMLParser(target=parser_target)

67

Namespaces

>>> events = etree.fromstring(’<root test="true"/>’, parser)

>>> print(parser_target.close_count)
1

>>> for event in events:
... print(’event: %s - tag: %s’ % (event[0], event[1]))
... for attr, value in event[2].items():
... print(’ * %s = %s’ % (attr, value))
event: start - tag: root

* test = true

You can reuse the parser and its target as often as you like, so you should take care that the .close() methods
really resets the target to a usable state (also in the case of an error!).

>>> events = etree.fromstring(’<root test="true"/>’, parser)
>>> print(parser_target.close_count)
2
>>> events = etree.fromstring(’<root test="true"/>’, parser)
>>> print(parser_target.close_count)
3
>>> events = etree.fromstring(’<root test="true"/>’, parser)
>>> print(parser_target.close_count)
4

>>> for event in events:
... print(’event: %s - tag: %s’ % (event[0], event[1]))
... for attr, value in event[2].items():
... print(’ * %s = %s’ % (attr, value))
event: start - tag: root

* test = true

Namespaces

The ElementTree API avoids namespace prefixes wherever possible and deploys the real namespaces (the URI)
instead:

>>> xhtml = etree.Element("{http://www.w3.org/1999/xhtml}html")
>>> body = etree.SubElement(xhtml, "{http://www.w3.org/1999/xhtml}body")
>>> body.text = "Hello World"

>>> print(etree.tostring(xhtml, pretty_print=True))
<html:html xmlns:html="http://www.w3.org/1999/xhtml">

<html:body>Hello World</html:body>
</html:html>

The notation that ElementTree uses was originally brought up by James Clark. It has the major advantage of
providing a universally qualified name for a tag, regardless of any prefixes that may or may not have been used
or defined in a document. By moving the indirection of prefixes out of the way, it makes namespace aware code
much clearer and easier to get right.

As you can see from the example, prefixes only become important when you serialise the result. However, the
above code looks somewhat verbose due to the lengthy namespace names. And retyping or copying a string over
and over again is error prone. It is therefore common practice to store a namespace URI in a global variable. To
adapt the namespace prefixes for serialisation, you can also pass a mapping to the Element factory function, e.g.

68

http://www.w3.org/TR/xml-names/#ns-qualnames
http://www.jclark.com/xml/xmlns.htm

Namespaces

to define the default namespace:

>>> XHTML_NAMESPACE = "http://www.w3.org/1999/xhtml"
>>> XHTML = "{%s}" % XHTML_NAMESPACE

>>> NSMAP = {None : XHTML_NAMESPACE} # the default namespace (no prefix)

>>> xhtml = etree.Element(XHTML + "html", nsmap=NSMAP) # lxml only!
>>> body = etree.SubElement(xhtml, XHTML + "body")
>>> body.text = "Hello World"

>>> print(etree.tostring(xhtml, pretty_print=True))
<html xmlns="http://www.w3.org/1999/xhtml">

<body>Hello World</body>
</html>

You can also use the QName helper class to build or split qualified tag names:

>>> tag = etree.QName(’http://www.w3.org/1999/xhtml’, ’html’)
>>> print(tag.localname)
html
>>> print(tag.namespace)
http://www.w3.org/1999/xhtml
>>> print(tag.text)
{http://www.w3.org/1999/xhtml}html

>>> tag = etree.QName(’{http://www.w3.org/1999/xhtml}html’)
>>> print(tag.localname)
html
>>> print(tag.namespace)
http://www.w3.org/1999/xhtml

>>> root = etree.Element(’{http://www.w3.org/1999/xhtml}html’)
>>> tag = etree.QName(root)
>>> print(tag.localname)
html

>>> tag = etree.QName(root, ’script’)
>>> print(tag.text)
{http://www.w3.org/1999/xhtml}script
>>> tag = etree.QName(’{http://www.w3.org/1999/xhtml}html’, ’script’)
>>> print(tag.text)
{http://www.w3.org/1999/xhtml}script

lxml.etree allows you to look up the current namespaces defined for a node through the .nsmap property:

>>> xhtml.nsmap
{None: ’http://www.w3.org/1999/xhtml’}

Note, however, that this includes all prefixes known in the context of an Element, not only those that it defines
itself.

>>> root = etree.Element(’root’, nsmap={’a’: ’http://a.b/c’})
>>> child = etree.SubElement(root, ’child’,
... nsmap={’b’: ’http://b.c/d’})
>>> len(root.nsmap)
1
>>> len(child.nsmap)

69

Namespaces

2
>>> child.nsmap[’a’]
’http://a.b/c’
>>> child.nsmap[’b’]
’http://b.c/d’

Therefore, modifying the returned dict cannot have any meaningful impact on the Element. Any changes to it are
ignored.

Namespaces on attributes work alike, but as of version 2.3, lxml.etree will make sure that the attribute uses a pre-
fixed namespace declaration. This is because unprefixed attribute names are not considered being in a namespace
by the XML namespace specification (section 6.2), so they may end up loosing their namespace on a serialise-parse
roundtrip, even if they appear in a namespaced element.

>>> body.set(XHTML + "bgcolor", "#CCFFAA")

>>> print(etree.tostring(xhtml, pretty_print=True))
<html xmlns="http://www.w3.org/1999/xhtml">

<body xmlns:html="http://www.w3.org/1999/xhtml" html:bgcolor="#CCFFAA">Hello World</body>
</html>

>>> print(body.get("bgcolor"))
None
>>> body.get(XHTML + "bgcolor")
’#CCFFAA’

You can also use XPath with fully qualified names:

>>> find_xhtml_body = etree.ETXPath(# lxml only !
... "//{%s}body" % XHTML_NAMESPACE)
>>> results = find_xhtml_body(xhtml)

>>> print(results[0].tag)
{http://www.w3.org/1999/xhtml}body

For convenience, you can use "*" wildcards in all iterators of lxml.etree, both for tag names and namespaces:

>>> for el in xhtml.iter(’*’): print(el.tag) # any element
{http://www.w3.org/1999/xhtml}html
{http://www.w3.org/1999/xhtml}body
>>> for el in xhtml.iter(’{http://www.w3.org/1999/xhtml}*’): print(el.tag)
{http://www.w3.org/1999/xhtml}html
{http://www.w3.org/1999/xhtml}body
>>> for el in xhtml.iter(’{*}body’): print(el.tag)
{http://www.w3.org/1999/xhtml}body

To look for elements that do not have a namespace, either use the plain tag name or provide the empty namespace
explicitly:

>>> [el.tag for el in xhtml.iter(’{http://www.w3.org/1999/xhtml}body’)]
[’{http://www.w3.org/1999/xhtml}body’]
>>> [el.tag for el in xhtml.iter(’body’)]
[]
>>> [el.tag for el in xhtml.iter(’{}body’)]
[]
>>> [el.tag for el in xhtml.iter(’{}*’)]
[]

70

http://www.w3.org/TR/2009/REC-xml-names-20091208/#defaulting

The E-factory

The E-factory

The E-factory provides a simple and compact syntax for generating XML and HTML:

>>> from lxml.builder import E

>>> def CLASS(*args): # class is a reserved word in Python
... return {"class":’ ’.join(args)}

>>> html = page = (
... E.html(# create an Element called "html"
... E.head(
... E.title("This is a sample document")
...),
... E.body(
... E.h1("Hello!", CLASS("title")),
... E.p("This is a paragraph with ", E.b("bold"), " text in it!"),
... E.p("This is another paragraph, with a", "\n ",
... E.a("link", href="http://www.python.org"), "."),
... E.p("Here are some reservered characters: <spam&egg>."),
... etree.XML("<p>And finally an embedded XHTML fragment.</p>"),
...)
...)
...)

>>> print(etree.tostring(page, pretty_print=True))
<html>

<head>
<title>This is a sample document</title>

</head>
<body>

<h1 class="title">Hello!</h1>
<p>This is a paragraph with bold text in it!</p>
<p>This is another paragraph, with a

link.</p>
<p>Here are some reservered characters: <spam&egg>.</p>
<p>And finally an embedded XHTML fragment.</p>

</body>
</html>

The Element creation based on attribute access makes it easy to build up a simple vocabulary for an XML language:

>>> from lxml.builder import ElementMaker # lxml only !

>>> E = ElementMaker(namespace="http://my.de/fault/namespace",
... nsmap={’p’ : "http://my.de/fault/namespace"})

>>> DOC = E.doc
>>> TITLE = E.title
>>> SECTION = E.section
>>> PAR = E.par

>>> my_doc = DOC(
... TITLE("The dog and the hog"),
... SECTION(
... TITLE("The dog"),

71

ElementPath

... PAR("Once upon a time, ..."),

... PAR("And then ...")

...),

... SECTION(

... TITLE("The hog"),

... PAR("Sooner or later ...")

...)

...)

>>> print(etree.tostring(my_doc, pretty_print=True))
<p:doc xmlns:p="http://my.de/fault/namespace">

<p:title>The dog and the hog</p:title>
<p:section>

<p:title>The dog</p:title>
<p:par>Once upon a time, ...</p:par>
<p:par>And then ...</p:par>

</p:section>
<p:section>

<p:title>The hog</p:title>
<p:par>Sooner or later ...</p:par>

</p:section>
</p:doc>

One such example is the module lxml.html.builder, which provides a vocabulary for HTML.

When dealing with multiple namespaces, it is good practice to define one ElementMaker for each namespace URI.
Again, note how the above example predefines the tag builders in named constants. That makes it easy to put all
tag declarations of a namespace into one Python module and to import/use the tag name constants from there.
This avoids pitfalls like typos or accidentally missing namespaces.

ElementPath

The ElementTree library comes with a simple XPath-like path language called ElementPath. The main difference
is that you can use the {namespace}tag notation in ElementPath expressions. However, advanced features
like value comparison and functions are not available.

In addition to a full XPath implementation, lxml.etree supports the ElementPath language in the same way Ele-
mentTree does, even using (almost) the same implementation. The API provides four methods here that you can
find on Elements and ElementTrees:

∙ iterfind() iterates over all Elements that match the path expression

∙ findall() returns a list of matching Elements

∙ find() efficiently returns only the first match

∙ findtext() returns the .text content of the first match

Here are some examples:

>>> root = etree.XML("<root>aText<c/></root>")

Find a child of an Element:

>>> print(root.find("b"))
None
>>> print(root.find("a").tag)

72

http://effbot.org/zone/element-xpath.htm

ElementPath

a

Find an Element anywhere in the tree:

>>> print(root.find(".//b").tag)
b
>>> [b.tag for b in root.iterfind(".//b")]
[’b’, ’b’]

Find Elements with a certain attribute:

>>> print(root.findall(".//a[@x]")[0].tag)
a
>>> print(root.findall(".//a[@y]"))
[]

In lxml 3.4, there is a new helper to generate a structural ElementPath expression for an Element:

>>> tree = etree.ElementTree(root)
>>> a = root[0]
>>> print(tree.getelementpath(a[0]))
a/b[1]
>>> print(tree.getelementpath(a[1]))
a/c
>>> print(tree.getelementpath(a[2]))
a/b[2]
>>> tree.find(tree.getelementpath(a[2])) == a[2]
True

As long as the tree is not modified, this path expression represents an identifier for a given element that can be
used to find() it in the same tree later. Compared to XPath, ElementPath expressions have the advantage of being
self-contained even for documents that use namespaces.

The .iter() method is a special case that only finds specific tags in the tree by their name, not based on a path.
That means that the following commands are equivalent in the success case:

>>> print(root.find(".//b").tag)
b
>>> print(next(root.iterfind(".//b")).tag)
b
>>> print(next(root.iter("b")).tag)
b

Note that the .find() method simply returns None if no match is found, whereas the other two examples would
raise a StopIteration exception.

73

Chapter 8

APIs specific to lxml.etree

lxml.etree tries to follow established APIs wherever possible. Sometimes, however, the need to expose a feature
in an easy way led to the invention of a new API. This page describes the major differences and a few additions to
the main ElementTree API.

For a complete reference of the API, see the generated API documentation.

Separate pages describe the support for parsing XML, executing XPath and XSLT, validating XML and interfacing
with other XML tools through the SAX-API.

lxml is extremely extensible through XPath functions in Python, custom Python element classes, custom URL
resolvers and even at the C-level.

lxml.etree

lxml.etree tries to follow the ElementTree API wherever it can. There are however some incompatibilities (see
compatibility). The extensions are documented here.

If you need to know which version of lxml is installed, you can access the lxml.etree.LXML_VERSION
attribute to retrieve a version tuple. Note, however, that it did not exist before version 1.0, so you will get
an AttributeError in older versions. The versions of libxml2 and libxslt are available through the attributes
LIBXML_VERSION and LIBXSLT_VERSION.

The following examples usually assume this to be executed first:

>>> from lxml import etree

Other Element APIs

While lxml.etree itself uses the ElementTree API, it is possible to replace the Element implementation by custom
element subclasses. This has been used to implement well-known XML APIs on top of lxml. For example, lxml
ships with a data-binding implementation called objectify, which is similar to the Amara bindery tool.

lxml.etree comes with a number of different lookup schemes to customize the mapping between libxml2 nodes
and the Element classes used by lxml.etree.

74

api/index.html
http://effbot.org/zone/element-index.htm
http://uche.ogbuji.net/tech/4suite/amara/

Trees and Documents

Trees and Documents

Compared to the original ElementTree API, lxml.etree has an extended tree model. It knows about parents and
siblings of elements:

>>> root = etree.Element("root")
>>> a = etree.SubElement(root, "a")
>>> b = etree.SubElement(root, "b")
>>> c = etree.SubElement(root, "c")
>>> d = etree.SubElement(root, "d")
>>> e = etree.SubElement(d, "e")
>>> b.getparent() == root
True
>>> print(b.getnext().tag)
c
>>> print(c.getprevious().tag)
b

Elements always live within a document context in lxml. This implies that there is also a notion of an absolute
document root. You can retrieve an ElementTree for the root node of a document from any of its elements.

>>> tree = d.getroottree()
>>> print(tree.getroot().tag)
root

Note that this is different from wrapping an Element in an ElementTree. You can use ElementTrees to create XML
trees with an explicit root node:

>>> tree = etree.ElementTree(d)
>>> print(tree.getroot().tag)
d
>>> etree.tostring(tree)
b’<d><e/></d>’

ElementTree objects are serialised as complete documents, including preceding or trailing processing instructions
and comments.

All operations that you run on such an ElementTree (like XPath, XSLT, etc.) will understand the explicitly chosen
root as root node of a document. They will not see any elements outside the ElementTree. However, ElementTrees
do not modify their Elements:

>>> element = tree.getroot()
>>> print(element.tag)
d
>>> print(element.getparent().tag)
root
>>> print(element.getroottree().getroot().tag)
root

The rule is that all operations that are applied to Elements use either the Element itself as reference point, or the
absolute root of the document that contains this Element (e.g. for absolute XPath expressions). All operations on
an ElementTree use its explicit root node as reference.

75

Iteration

Iteration

The ElementTree API makes Elements iterable to supports iteration over their children. Using the tree defined
above, we get:

>>> [child.tag for child in root]
[’a’, ’b’, ’c’, ’d’]

To iterate in the opposite direction, use the builtin reversed() function that exists in Python 2.4 and later.

Tree traversal should use the element.iter() method:

>>> [el.tag for el in root.iter()]
[’root’, ’a’, ’b’, ’c’, ’d’, ’e’]

lxml.etree also supports this, but additionally features an extended API for iteration over the children, follow-
ing/preceding siblings, ancestors and descendants of an element, as defined by the respective XPath axis:

>>> [child.tag for child in root.iterchildren()]
[’a’, ’b’, ’c’, ’d’]
>>> [child.tag for child in root.iterchildren(reversed=True)]
[’d’, ’c’, ’b’, ’a’]
>>> [sibling.tag for sibling in b.itersiblings()]
[’c’, ’d’]
>>> [sibling.tag for sibling in c.itersiblings(preceding=True)]
[’b’, ’a’]
>>> [ancestor.tag for ancestor in e.iterancestors()]
[’d’, ’root’]
>>> [el.tag for el in root.iterdescendants()]
[’a’, ’b’, ’c’, ’d’, ’e’]

Note how element.iterdescendants() does not include the element itself, as opposed to element.iter().
The latter effectively implements the ’descendant-or-self’ axis in XPath.

All of these iterators support one (or more, since lxml 2.4) additional arguments that filter the generated elements
by tag name:

>>> [child.tag for child in root.iterchildren(’a’)]
[’a’]
>>> [child.tag for child in d.iterchildren(’a’)]
[]
>>> [el.tag for el in root.iterdescendants(’d’)]
[’d’]
>>> [el.tag for el in root.iter(’d’)]
[’d’]
>>> [el.tag for el in root.iter(’d’, ’a’)]
[’a’, ’d’]

Note that the order of the elements is determined by the iteration order, which is the document order in most
cases (except for preceding siblings and ancestors, where it is the reversed document order). The order of the tag
selection arguments is irrelevant, as you can see in the last example.

The most common way to traverse an XML tree is depth-first, which traverses the tree in document order. This is
implemented by the .iter() method. While there is no dedicated method for breadth-first traversal, it is almost
as simple if you use the collections.deque type that is available in Python 2.4 and later.

>>> root = etree.XML(’<root><a><c/><d><e/></d></root>’)
>>> print(etree.tostring(root, pretty_print=True, encoding=’unicode’))

76

Error handling on exceptions

<root>
<a>

<c/>

<d>

<e/>
</d>

</root>

>>> queue = deque([root])
>>> while queue:
... el = queue.popleft() # pop next element
... queue.extend(el) # append its children
... print(el.tag)
root
a
d
b
c
e

See also the section on the utility functions iterparse() and iterwalk() in the parser documentation.

Error handling on exceptions

Libxml2 provides error messages for failures, be it during parsing, XPath evaluation or schema validation. The
preferred way of accessing them is through the local error_log property of the respective evaluator or trans-
former object. See their documentation for details.

However, lxml also keeps a global error log of all errors that occurred at the application level. Whenever an
exception is raised, you can retrieve the errors that occured and “might have” lead to the problem from the error
log copy attached to the exception:

>>> etree.clear_error_log()
>>> broken_xml = ’’’
... <root>
... <a>
... </root>
... ’’’
>>> try:
... etree.parse(StringIO(broken_xml))
... except etree.XMLSyntaxError, e:
... pass # just put the exception into e

Once you have caught this exception, you can access its error_log property to retrieve the log entries or filter
them by a specific type, error domain or error level:

>>> log = e.error_log.filter_from_level(etree.ErrorLevels.FATAL)
>>> print(log)
<string>:4:8:FATAL:PARSER:ERR_TAG_NAME_MISMATCH: Opening and ending tag mismatch: a line 3 and root
<string>:5:1:FATAL:PARSER:ERR_TAG_NOT_FINISHED: Premature end of data in tag root line 2

This might look a little cryptic at first, but it is the information that libxml2 gives you. At least the message at
the end should give you a hint what went wrong and you can see that the fatal errors (FATAL) happened during

77

Serialisation

parsing (PARSER) lines 4, column 8 and line 5, column 1 of a string (<string>, or the filename if available). Here,
PARSER is the so-called error domain, see lxml.etree.ErrorDomains for that. You can get it from a log
entry like this:

>>> entry = log[0]
>>> print(entry.domain_name)
PARSER
>>> print(entry.type_name)
ERR_TAG_NAME_MISMATCH
>>> print(entry.filename)
<string>

There is also a convenience attribute last_error that returns the last error or fatal error that occurred:

>>> entry = e.error_log.last_error
>>> print(entry.domain_name)
PARSER
>>> print(entry.type_name)
ERR_TAG_NOT_FINISHED
>>> print(entry.filename)
<string>

Error logging

lxml.etree supports logging libxml2 messages to the Python stdlib logging module. This is done through the
etree.PyErrorLog class. It disables the error reporting from exceptions and forwards log messages to a
Python logger. To use it, see the descriptions of the function etree.useGlobalPythonLog and the class
etree.PyErrorLog for help. Note that this does not affect the local error logs of XSLT, XMLSchema, etc.

Serialisation

lxml.etree has direct support for pretty printing XML output. Functions like ElementTree.write() and
tostring() support it through a keyword argument:

>>> root = etree.XML("<root><test/></root>")
>>> etree.tostring(root)
b’<root><test/></root>’

>>> print(etree.tostring(root, pretty_print=True))
<root>

<test/>
</root>

Note the newline that is appended at the end when pretty printing the output. It was added in lxml 2.0.

By default, lxml (just as ElementTree) outputs the XML declaration only if it is required by the standard:

>>> unicode_root = etree.Element(u"t\u3120st")
>>> unicode_root.text = u"t\u0A0Ast"
>>> etree.tostring(unicode_root, encoding="utf-8")
b’<t\xe3\x84\xa0st>t\xe0\xa8\x8ast</t\xe3\x84\xa0st>’

>>> print(etree.tostring(unicode_root, encoding="iso-8859-1"))

78

Incremental XML generation

<?xml version=’1.0’ encoding=’iso-8859-1’?>
<tㄠst>tਊst</tㄠst>

Also see the general remarks on Unicode support.

You can enable or disable the declaration explicitly by passing another keyword argument for the serialisation:

>>> print(etree.tostring(root, xml_declaration=True))
<?xml version=’1.0’ encoding=’ASCII’?>
<root><test/></root>

>>> unicode_root.clear()
>>> etree.tostring(unicode_root, encoding="UTF-16LE",
... xml_declaration=False)
b’<\x00t\x00 1s\x00t\x00/\x00>\x00’

Note that a standard compliant XML parser will not consider the last line well-formed XML if the encoding is not
explicitly provided somehow, e.g. in an underlying transport protocol:

>>> notxml = etree.tostring(unicode_root, encoding="UTF-16LE",
... xml_declaration=False)
>>> root = etree.XML(notxml) #doctest: +ELLIPSIS
Traceback (most recent call last):

...
lxml.etree.XMLSyntaxError: ...

Since version 2.3, the serialisation can override the internal subset of the document with a user provided DOC-
TYPE:

>>> xml = ’<!DOCTYPE root>\n<root/>’
>>> tree = etree.parse(StringIO(xml))

>>> print(etree.tostring(tree))
<!DOCTYPE root>
<root/>

>>> print(etree.tostring(tree,
... doctype=’<!DOCTYPE root SYSTEM "/tmp/test.dtd">’))
<!DOCTYPE root SYSTEM "/tmp/test.dtd">
<root/>

The content will be encoded, but otherwise copied verbatimly into the output stream. It is therefore left to the user
to take care for a correct doctype format, including the name of the root node.

Incremental XML generation

Since version 3.1, lxml has an API for incrementally generating XML using the with statement. It’s main purpose
is to freely and safely mix surrounding elements with pre-built in-memory trees, e.g. to write out large documents
that consist mostly of repetitive subtrees (like database dumps). But it can be useful in many cases where memory
consumption matters or where XML is naturally generated sequentially.

The API can serialise to real files (also given as file paths) as well as file-like objects, e.g. io.BytesIO(). Here
is a simple example:

>>> f = BytesIO()
>>> with etree.xmlfile(f) as xf:

79

Incremental XML generation

... with xf.element(’abc’):

... xf.write(’text’)

>>> print(f.getvalue().decode(’utf-8’))
<abc>text</abc>

xmlfile() accepts a file path as first argument, or a file(-like) object, as in the example above. In the first case,
it takes care to open and close the file itself, whereas file(-like) objects are not closed by default. This is left to the
code that opened them. Since lxml 3.4, however, you can pass the argument close=True to make lxml call the
object’s .close() method when exiting the xmlfile context manager.

To insert pre-constructed Elements and subtrees, just pass them into write():

>>> f = BytesIO()
>>> with etree.xmlfile(f) as xf:
... with xf.element(’abc’):
... with xf.element(’in’):
...
... for value in ’123’:
... # construct a really complex XML tree
... el = etree.Element(’xyz’, attr=value)
...
... xf.write(el)
...
... # no longer needed, discard it right away!
... el = None

>>> print(f.getvalue().decode(’utf-8’))
<abc><in><xyz attr="1"/><xyz attr="2"/><xyz attr="3"/></in></abc>

It is a common pattern to have one or more nested element() blocks, and then build in-memory XML subtrees
in a loop (using the ElementTree API, the builder API, XSLT, or whatever) and write them out into the XML file
one after the other. That way, they can be removed from memory right after their construction, which can largely
reduce the memory footprint of an application, while keeping the overall XML generation easy, safe and correct.

Together with Python coroutines, this can be used to generate XML in an asynchronous, non-blocking fashion,
e.g. for a stream protocol like the instant messaging protocol XMPP:

def writer(out_stream):
with xmlfile(out_stream) as xf:

with xf.element(’{http://etherx.jabber.org/streams}stream’):
try:

while True:
el = (yield)
xf.write(el)
xf.flush()

except GeneratorExit:
pass

w = writer(stream)
next(w) # start writing (run up to ’yield’)

Then, whenever XML elements are available for writing, call

w.send(element)

And when done:

80

https://en.wikipedia.org/wiki/Extensible_Messaging_and_Presence_Protocol

XInclude and ElementInclude

w.close()

Note the additional xf.flush() call in the example above, which is available since lxml 3.4. Normally, the
output stream is buffered to avoid excessive I/O calls. Whenever the internal buffer fills up, its content is written
out. In the case above, however, we want to make sure that each message that we write (i.e. each element subtree)
is written out immediately, so we flush the content explicitly at the right point.

Alternatively, if buffering is not desired at all, it can be disabled by passing the flag buffered=False into
xmlfile() (also since lxml 3.4).

CDATA

By default, lxml’s parser will strip CDATA sections from the tree and replace them by their plain text content. As
real applications for CDATA are rare, this is the best way to deal with this issue.

However, in some cases, keeping CDATA sections or creating them in a document is required to adhere to existing
XML language definitions. For these special cases, you can instruct the parser to leave CDATA sections in the
document:

>>> parser = etree.XMLParser(strip_cdata=False)
>>> root = etree.XML(’<root><![CDATA[test]]></root>’, parser)
>>> root.text
’test’

>>> etree.tostring(root)
b’<root><![CDATA[test]]></root>’

Note how the .text property does not give any indication that the text content is wrapped by a CDATA section.
If you want to make sure your data is wrapped by a CDATA block, you can use the CDATA() text wrapper:

>>> root.text = ’test’

>>> root.text
’test’
>>> etree.tostring(root)
b’<root>test</root>’

>>> root.text = etree.CDATA(root.text)

>>> root.text
’test’
>>> etree.tostring(root)
b’<root><![CDATA[test]]></root>’

XInclude and ElementInclude

You can let lxml process xinclude statements in a document by calling the xinclude() method on a tree:

>>> data = StringIO(’’’\
... <doc xmlns:xi="http://www.w3.org/2001/XInclude">
... <foo/>
... <xi:include href="doc/test.xml" />
... </doc>’’’)

81

write_c14n on ElementTree

>>> tree = etree.parse(data)
>>> tree.xinclude()
>>> print(etree.tostring(tree.getroot()))
<doc xmlns:xi="http://www.w3.org/2001/XInclude">
<foo/>
<a xml:base="doc/test.xml"/>
</doc>

Note that the ElementTree compatible ElementInclude module is also supported as lxml.ElementInclude.
It has the additional advantage of supporting custom URL resolvers at the Python level. The normal XInclude
mechanism cannot deploy these. If you need ElementTree compatibility or custom resolvers, you have to stick to
the external Python module.

write_c14n on ElementTree

The lxml.etree.ElementTree class has a method write_c14n, which takes a file object as argument. This file
object will receive an UTF-8 representation of the canonicalized form of the XML, following the W3C C14N
recommendation. For example:

>>> f = StringIO(’<a>’)
>>> tree = etree.parse(f)
>>> f2 = StringIO()
>>> tree.write_c14n(f2)
>>> print(f2.getvalue().decode("utf-8"))
<a>

82

http://effbot.org/zone/element-xinclude.htm

Chapter 9

Parsing XML and HTML with lxml

lxml provides a very simple and powerful API for parsing XML and HTML. It supports one-step parsing as well
as step-by-step parsing using an event-driven API (currently only for XML).

The usual setup procedure:

>>> from lxml import etree

The following examples also use StringIO or BytesIO to show how to parse from files and file-like objects. Both
are available in the io module:

from io import StringIO, BytesIO

Parsers

Parsers are represented by parser objects. There is support for parsing both XML and (broken) HTML. Note that
XHTML is best parsed as XML, parsing it with the HTML parser can lead to unexpected results. Here is a simple
example for parsing XML from an in-memory string:

>>> xml = ’<b xmlns="test"/>’

>>> root = etree.fromstring(xml)
>>> etree.tostring(root)
b’<b xmlns="test"/>’

To read from a file or file-like object, you can use the parse() function, which returns an ElementTree
object:

>>> tree = etree.parse(StringIO(xml))
>>> etree.tostring(tree.getroot())
b’<b xmlns="test"/>’

Note how the parse() function reads from a file-like object here. If parsing is done from a real file, it is more
common (and also somewhat more efficient) to pass a filename:

>>> tree = etree.parse("doc/test.xml")

lxml can parse from a local file, an HTTP URL or an FTP URL. It also auto-detects and reads gzip-compressed
XML files (.gz).

83

Parser options Parsers

If you want to parse from memory and still provide a base URL for the document (e.g. to support relative paths in
an XInclude), you can pass the base_url keyword argument:

>>> root = etree.fromstring(xml, base_url="http://where.it/is/from.xml")

Parser options

The parsers accept a number of setup options as keyword arguments. The above example is easily extended to
clean up namespaces during parsing:

>>> parser = etree.XMLParser(ns_clean=True)
>>> tree = etree.parse(StringIO(xml), parser)
>>> etree.tostring(tree.getroot())
b’’

The keyword arguments in the constructor are mainly based on the libxml2 parser configuration. A DTD will also
be loaded if validation or attribute default values are requested.

Available boolean keyword arguments:

∙ attribute_defaults - read the DTD (if referenced by the document) and add the default attributes from it

∙ dtd_validation - validate while parsing (if a DTD was referenced)

∙ load_dtd - load and parse the DTD while parsing (no validation is performed)

∙ no_network - prevent network access when looking up external documents (on by default)

∙ ns_clean - try to clean up redundant namespace declarations

∙ recover - try hard to parse through broken XML

∙ remove_blank_text - discard blank text nodes between tags, also known as ignorable whitespace. This is
best used together with a DTD or schema (which tells data and noise apart), otherwise a heuristic will be
applied.

∙ remove_comments - discard comments

∙ remove_pis - discard processing instructions

∙ strip_cdata - replace CDATA sections by normal text content (on by default)

∙ resolve_entities - replace entities by their text value (on by default)

∙ huge_tree - disable security restrictions and support very deep trees and very long text content (only affects
libxml2 2.7+)

∙ compact - use compact storage for short text content (on by default)

∙ collect_ids - collect XML IDs in a hash table while parsing (on by default). Disabling this can substantially
speed up parsing of documents with many different IDs if the hash lookup is not used afterwards.

Other keyword arguments:

∙ encoding - override the document encoding

∙ target - a parser target object that will receive the parse events (see The target parser interface)

∙ schema - an XMLSchema to validate against (see validation)

84

Error log Parsers

Error log

Parsers have an error_log property that lists the errors and warnings of the last parser run:

>>> parser = etree.XMLParser()
>>> print(len(parser.error_log))
0

>>> tree = etree.XML("<root>\n", parser)
Traceback (most recent call last):

...
lxml.etree.XMLSyntaxError: Opening and ending tag mismatch: root line 1 and b, line 2, column 5

>>> print(len(parser.error_log))
1

>>> error = parser.error_log[0]
>>> print(error.message)
Opening and ending tag mismatch: root line 1 and b
>>> print(error.line)
2
>>> print(error.column)
5

Each entry in the log has the following properties:

∙ message: the message text

∙ domain: the domain ID (see the lxml.etree.ErrorDomains class)

∙ type: the message type ID (see the lxml.etree.ErrorTypes class)

∙ level: the log level ID (see the lxml.etree.ErrorLevels class)

∙ line: the line at which the message originated (if applicable)

∙ column: the character column at which the message originated (if applicable)

∙ filename: the name of the file in which the message originated (if applicable)

For convenience, there are also three properties that provide readable names for the ID values:

∙ domain_name

∙ type_name

∙ level_name

To filter for a specific kind of message, use the different filter_*() methods on the error log (see the
lxml.etree._ListErrorLog class).

Parsing HTML

HTML parsing is similarly simple. The parsers have a recover keyword argument that the HTMLParser sets
by default. It lets libxml2 try its best to return a valid HTML tree with all content it can manage to parse. It will
not raise an exception on parser errors. You should use libxml2 version 2.6.21 or newer to take advantage of this
feature.

85

Doctype information Parsers

>>> broken_html = "<html><head><title>test<body><h1>page title</h3>"

>>> parser = etree.HTMLParser()
>>> tree = etree.parse(StringIO(broken_html), parser)

>>> result = etree.tostring(tree.getroot(),
... pretty_print=True, method="html")
>>> print(result)
<html>

<head>
<title>test</title>

</head>
<body>

<h1>page title</h1>
</body>

</html>

Lxml has an HTML function, similar to the XML shortcut known from ElementTree:

>>> html = etree.HTML(broken_html)
>>> result = etree.tostring(html, pretty_print=True, method="html")
>>> print(result)
<html>

<head>
<title>test</title>

</head>
<body>

<h1>page title</h1>
</body>

</html>

The support for parsing broken HTML depends entirely on libxml2’s recovery algorithm. It is not the fault of lxml
if you find documents that are so heavily broken that the parser cannot handle them. There is also no guarantee
that the resulting tree will contain all data from the original document. The parser may have to drop seriously
broken parts when struggling to keep parsing. Especially misplaced meta tags can suffer from this, which may
lead to encoding problems.

Note that the result is a valid HTML tree, but it may not be a well-formed XML tree. For example, XML forbids
double hyphens in comments, which the HTML parser will happily accept in recovery mode. Therefore, if your
goal is to serialise an HTML document as an XML/XHTML document after parsing, you may have to apply some
manual preprocessing first.

Also note that the HTML parser is meant to parse HTML documents. For XHTML documents, use the XML
parser, which is namespace aware.

Doctype information

The use of the libxml2 parsers makes some additional information available at the API level. Currently, Element-
Tree objects can access the DOCTYPE information provided by a parsed document, as well as the XML version
and the original encoding:

>>> pub_id = "-//W3C//DTD XHTML 1.0 Transitional//EN"
>>> sys_url = "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
>>> doctype_string = ’<!DOCTYPE html PUBLIC "%s" "%s">’ % (pub_id, sys_url)
>>> xml_header = ’<?xml version="1.0" encoding="ascii"?>’
>>> xhtml = xml_header + doctype_string + ’<html><body></body></html>’

86

The target parser interface

>>> tree = etree.parse(StringIO(xhtml))
>>> docinfo = tree.docinfo
>>> print(docinfo.public_id)
-//W3C//DTD XHTML 1.0 Transitional//EN
>>> print(docinfo.system_url)
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
>>> docinfo.doctype == doctype_string
True

>>> print(docinfo.xml_version)
1.0
>>> print(docinfo.encoding)
ascii

The target parser interface

As in ElementTree, and similar to a SAX event handler, you can pass a target object to the parser:

>>> class EchoTarget(object):
... def start(self, tag, attrib):
... print("start %s %r" % (tag, dict(attrib)))
... def end(self, tag):
... print("end %s" % tag)
... def data(self, data):
... print("data %r" % data)
... def comment(self, text):
... print("comment %s" % text)
... def close(self):
... print("close")
... return "closed!"

>>> parser = etree.XMLParser(target = EchoTarget())

>>> result = etree.XML("<element>some<!--comment-->text</element>",
... parser)
start element {}
data u’some’
comment comment
data u’text’
end element
close

>>> print(result)
closed!

It is important for the .close() method to reset the parser target to a usable state, so that you can reuse the
parser as often as you like:

>>> result = etree.XML("<element>some<!--comment-->text</element>",
... parser)
start element {}
data u’some’
comment comment

87

http://effbot.org/elementtree/elementtree-xmlparser.htm

The target parser interface

data u’text’
end element
close

>>> print(result)
closed!

Starting with lxml 2.3, the .close() method will also be called in the error case. This diverges from the
behaviour of ElementTree, but allows target objects to clean up their state in all situations, so that the parser can
reuse them afterwards.

>>> class CollectorTarget(object):
... def __init__(self):
... self.events = []
... def start(self, tag, attrib):
... self.events.append("start %s %r" % (tag, dict(attrib)))
... def end(self, tag):
... self.events.append("end %s" % tag)
... def data(self, data):
... self.events.append("data %r" % data)
... def comment(self, text):
... self.events.append("comment %s" % text)
... def close(self):
... self.events.append("close")
... return "closed!"

>>> parser = etree.XMLParser(target = CollectorTarget())

>>> result = etree.XML("<element>some</error>",
... parser) # doctest: +ELLIPSIS
Traceback (most recent call last):

...
lxml.etree.XMLSyntaxError: Opening and ending tag mismatch...

>>> for event in parser.target.events:
... print(event)
start element {}
data u’some’
close

Note that the parser does not build a tree when using a parser target. The result of the parser run is whatever the
target object returns from its .close() method. If you want to return an XML tree here, you have to create it
programmatically in the target object. An example for a parser target that builds a tree is the TreeBuilder:

>>> parser = etree.XMLParser(target = etree.TreeBuilder())

>>> result = etree.XML("<element>some<!--comment-->text</element>",
... parser)

>>> print(result.tag)
element
>>> print(result[0].text)
comment

88

The feed parser interface

The feed parser interface

Since lxml 2.0, the parsers have a feed parser interface that is compatible to the ElementTree parsers. You can use
it to feed data into the parser in a controlled step-by-step way.

In lxml.etree, you can use both interfaces to a parser at the same time: the parse() or XML() functions, and the
feed parser interface. Both are independent and will not conflict (except if used in conjunction with a parser target
object as described above).

To start parsing with a feed parser, just call its feed() method to feed it some data.

>>> parser = etree.XMLParser()

>>> for data in (’<?xml versio’, ’n="1.0"?’, ’><roo’, ’t><a’, ’/></root>’):
... parser.feed(data)

When you are done parsing, you must call the close() method to retrieve the root Element of the parse result
document, and to unlock the parser:

>>> root = parser.close()

>>> print(root.tag)
root
>>> print(root[0].tag)
a

If you do not call close(), the parser will stay locked and subsequent feeds will keep appending data, usually
resulting in a non well-formed document and an unexpected parser error. So make sure you always close the
parser after use, also in the exception case.

Another way of achieving the same step-by-step parsing is by writing your own file-like object that returns a chunk
of data on each read() call. Where the feed parser interface allows you to actively pass data chunks into the
parser, a file-like object passively responds to read() requests of the parser itself. Depending on the data source,
either way may be more natural.

Note that the feed parser has its own error log called feed_error_log. Errors in the feed parser do not show
up in the normal error_log and vice versa.

You can also combine the feed parser interface with the target parser:

>>> parser = etree.XMLParser(target = EchoTarget())

>>> parser.feed("<eleme")
>>> parser.feed("nt>some text</elem")
start element {}
data u’some text’
>>> parser.feed("ent>")
end element

>>> result = parser.close()
close
>>> print(result)
closed!

Again, this prevents the automatic creation of an XML tree and leaves all the event handling to the target object.
The close() method of the parser forwards the return value of the target’s close() method.

89

http://effbot.org/elementtree/elementtree-xmlparser.htm

Incremental event parsing

Incremental event parsing

In Python 3.4, the xml.etree.ElementTree package gained an extension to the feed parser interface that is
implemented by the XMLPullParser class. It additionally allows processing parse events after each incremental
parsing step, by calling the .read_events() method and iterating over the result. This is most useful for non-
blocking execution environments where data chunks arrive one after the other and should be processed as far as
possible in each step.

The same feature is available in lxml 3.3. The basic usage is as follows:

>>> parser = etree.XMLPullParser(events=(’start’, ’end’))

>>> def print_events(parser):
... for action, element in parser.read_events():
... print(’%s: %s’ % (action, element.tag))

>>> parser.feed(’<root>some text’)
>>> print_events(parser)
start: root
>>> print_events(parser) # well, no more events, as before ...

>>> parser.feed(’<child><a />’)
>>> print_events(parser)
start: child
start: a
end: a

>>> parser.feed(’</child></roo’)
>>> print_events(parser)
end: child
>>> parser.feed(’t>’)
>>> print_events(parser)
end: root

Just like the normal feed parser, the XMLPullParser builds a tree in memory (and you should always call the
.close() method when done with parsing):

>>> root = parser.close()
>>> etree.tostring(root)
b’<root>some text<child><a/></child></root>’

However, since the parser provides incremental access to that tree, you can explicitly delete content that you no
longer need once you have processed it. Read the section on Modifying the tree below to see what you can do
here and what kind of modifications you should avoid.

In lxml, it is enough to call the .read_events() method once as the iterator it returns can be reused when new
events are available.

Also, as known from other iterators in lxml, you can pass a tag argument that selects which parse events are
returned by the .read_events() iterator.

Event types

The parse events are tuples (event-type, object). The event types supported by ElementTree and lxml.etree
are the strings ’start’, ’end’, ’start-ns’ and ’end-ns’. The ’start’ and ’end’ events represent opening and closing el-
ements. They are accompanied by the respective Element instance. By default, only ’end’ events are generated,

90

Modifying the tree Incremental event parsing

whereas the example above requested the generation of both ’start’ and ’end’ events.

The ’start-ns’ and ’end-ns’ events notify about namespace declarations. They do not come with Elements. Instead,
the value of the ’start-ns’ event is a tuple (prefix, namespaceURI) that designates the beginning of a prefix-
namespace mapping. The corresponding end-ns event does not have a value (None). It is common practice to
use a list as namespace stack and pop the last entry on the ’end-ns’ event.

>>> def print_events(events):
... for action, obj in events:
... if action in (’start’, ’end’):
... print("%s: %s" % (action, obj.tag))
... elif action == ’start-ns’:
... print("%s: %s" % (action, obj))
... else:
... print(action)

>>> event_types = ("start", "end", "start-ns", "end-ns")
>>> parser = etree.XMLPullParser(event_types)
>>> events = parser.read_events()

>>> parser.feed(’<root><element>’)
>>> print_events(events)
start: root
start: element
>>> parser.feed(’text</element><element>text</element>’)
>>> print_events(events)
end: element
start: element
end: element
>>> parser.feed(’<empty-element xmlns="http://testns/" />’)
>>> print_events(events)
start-ns: (’’, ’http://testns/’)
start: {http://testns/}empty-element
end: {http://testns/}empty-element
end-ns
>>> parser.feed(’</root>’)
>>> print_events(events)
end: root

Modifying the tree

You can modify the element and its descendants when handling the ’end’ event. To save memory, for example,
you can remove subtrees that are no longer needed:

>>> parser = etree.XMLPullParser()
>>> events = parser.read_events()

>>> parser.feed(’<root><element key="value">text</element>’)
>>> parser.feed(’<element><child /></element>’)
>>> for action, elem in events:
... print(’%s: %d’ % (elem.tag, len(elem))) # processing
... elem.clear() # delete children
element: 0
child: 0
element: 1

91

Selective tag events Incremental event parsing

>>> parser.feed(’<empty-element xmlns="http://testns/" /></root>’)
>>> for action, elem in events:
... print(’%s: %d’ % (elem.tag, len(elem))) # processing
... elem.clear() # delete children
{http://testns/}empty-element: 0
root: 3

>>> root = parser.close()
>>> etree.tostring(root)
b’<root/>’

WARNING: During the ’start’ event, any content of the element, such as the descendants, following siblings or
text, is not yet available and should not be accessed. Only attributes are guaranteed to be set. During the ’end’
event, the element and its descendants can be freely modified, but its following siblings should not be accessed.
During either of the two events, you must not modify or move the ancestors (parents) of the current element. You
should also avoid moving or discarding the element itself. The golden rule is: do not touch anything that will have
to be touched again by the parser later on.

If you have elements with a long list of children in your XML file and want to save more memory during parsing,
you can clean up the preceding siblings of the current element:

>>> for event, element in parser.read_events():
... # ... do something with the element
... element.clear() # clean up children
... while element.getprevious() is not None:
... del element.getparent()[0] # clean up preceding siblings

The while loop deletes multiple siblings in a row. This is only necessary if you skipped over some of them using
the tag keyword argument. Otherwise, a simple if should do. The more selective your tag is, however, the more
thought you will have to put into finding the right way to clean up the elements that were skipped. Therefore, it is
sometimes easier to traverse all elements and do the tag selection by hand in the event handler code.

Selective tag events

As an extension over ElementTree, lxml.etree accepts a tag keyword argument just like element.iter(tag).
This restricts events to a specific tag or namespace:

>>> parser = etree.XMLPullParser(tag="element")

>>> parser.feed(’<root><element key="value">text</element>’)
>>> parser.feed(’<element><child /></element>’)
>>> parser.feed(’<empty-element xmlns="http://testns/" /></root>’)

>>> for action, elem in parser.read_events():
... print("%s: %s" % (action, elem.tag))
end: element
end: element

>>> event_types = ("start", "end")
>>> parser = etree.XMLPullParser(event_types, tag="{http://testns/}*")

>>> parser.feed(’<root><element key="value">text</element>’)
>>> parser.feed(’<element><child /></element>’)
>>> parser.feed(’<empty-element xmlns="http://testns/" /></root>’)

>>> for action, elem in parser.read_events():

92

Comments and PIs Incremental event parsing

... print("%s: %s" % (action, elem.tag))
start: {http://testns/}empty-element
end: {http://testns/}empty-element

Comments and PIs

As an extension over ElementTree, the XMLPullParser in lxml.etree also supports the event types ’comment’
and ’pi’ for the respective XML structures.

>>> event_types = ("start", "end", "comment", "pi")
>>> parser = etree.XMLPullParser(event_types)

>>> parser.feed(’<?some pi ?><!-- a comment --><root>’)
>>> parser.feed(’<element key="value">text</element>’)
>>> parser.feed(’<!-- another comment -->’)
>>> parser.feed(’<element>text</element>tail’)
>>> parser.feed(’<empty-element xmlns="http://testns/" />’)
>>> parser.feed(’</root>’)

>>> for action, elem in parser.read_events():
... if action in (’start’, ’end’):
... print("%s: %s" % (action, elem.tag))
... elif action == ’pi’:
... print("%s: -%s=%s-" % (action, elem.target, elem.text))
... else: # ’comment’
... print("%s: -%s-" % (action, elem.text))
pi: -some=pi -
comment: - a comment -
start: root
start: element
end: element
comment: - another comment -
start: element
end: element
start: {http://testns/}empty-element
end: {http://testns/}empty-element
end: root

>>> root = parser.close()
>>> print(root.tag)
root

Events with custom targets

You can combine the pull parser with a parser target. In that case, it is the target’s responsibility to generate event
values. Whatever it returns from its .start() and .end() methods will be returned by the pull parser as the
second item of the parse events tuple.

>>> class Target(object):
... def start(self, tag, attrib):
... print(’-> start(%s)’ % tag)
... return ’>>START: %s<<’ % tag
... def end(self, tag):

93

Events with custom targets Incremental event parsing

... print(’-> end(%s)’ % tag)

... return ’>>END: %s<<’ % tag

... def close(self):

... print(’-> close()’)

... return "CLOSED!"

>>> event_types = (’start’, ’end’)
>>> parser = etree.XMLPullParser(event_types, target=Target())

>>> parser.feed(’<root><child1 /><child2 /></root>’)
-> start(root)
-> start(child1)
-> end(child1)
-> start(child2)
-> end(child2)
-> end(root)

>>> for action, value in parser.read_events():
... print(’%s: %s’ % (action, value))
start: >>START: root<<
start: >>START: child1<<
end: >>END: child1<<
start: >>START: child2<<
end: >>END: child2<<
end: >>END: root<<

>>> print(parser.close())
-> close()
CLOSED!

As you can see, the event values do not even have to be Element objects. The target is generally free to decide
how it wants to create an XML tree or whatever else it wants to make of the parser callbacks. In many cases,
however, you will want to make your custom target inherit from the TreeBuilder class in order to have it build
a tree that you can process normally. The start() and .end() methods of TreeBuilder return the Element
object that was created, so you can override them and modify the input or output according to your needs. Here is
an example that filters attributes before they are being added to the tree:

>>> class AttributeFilter(etree.TreeBuilder):
... def start(self, tag, attrib):
... attrib = dict(attrib)
... if ’evil’ in attrib:
... del attrib[’evil’]
... return super(AttributeFilter, self).start(tag, attrib)

>>> parser = etree.XMLPullParser(target=AttributeFilter())
>>> parser.feed(’<root><child1 test="123" /><child2 evil="YES" /></root>’)

>>> for action, element in parser.read_events():
... print(’%s: %s(%r)’ % (action, element.tag, element.attrib))
end: child1({’test’: ’123’})
end: child2({})
end: root({})

>>> root = parser.close()

94

iterparse and iterwalk

iterparse and iterwalk

As known from ElementTree, the iterparse() utility function returns an iterator that generates parser events
for an XML file (or file-like object), while building the tree. You can think of it as a blocking wrapper around
the XMLPullParser that automatically and incrementally reads data from the input file for you and provides a
single iterator for them:

>>> xml = ’’’
... <root>
... <element key=’value’>text</element>
... <element>text</element>tail
... <empty-element xmlns="http://testns/" />
... </root>
... ’’’

>>> context = etree.iterparse(StringIO(xml))
>>> for action, elem in context:
... print("%s: %s" % (action, elem.tag))
end: element
end: element
end: {http://testns/}empty-element
end: root

After parsing, the resulting tree is available through the root property of the iterator:

>>> context.root.tag
’root’

The other event types can be activated with the events keyword argument:

>>> events = ("start", "end")
>>> context = etree.iterparse(StringIO(xml), events=events)
>>> for action, elem in context:
... print("%s: %s" % (action, elem.tag))
start: root
start: element
end: element
start: element
end: element
start: {http://testns/}empty-element
end: {http://testns/}empty-element
end: root

iterparse() also supports the tag argument for selective event iteration and several other parameters that
control the parser setup. You can also use it to parse HTML input by passing html=True.

iterwalk

A second extension over ElementTree is the iterwalk() function. It behaves exactly like iterparse(), but
works on Elements and ElementTrees. Here is an example for a tree parsed by iterparse():

>>> f = StringIO(xml)
>>> context = etree.iterparse(
... f, events=("start", "end"), tag="element")

>>> for action, elem in context:

95

Python unicode strings

... print("%s: %s" % (action, elem.tag))
start: element
end: element
start: element
end: element

>>> root = context.root

And now we can take the resulting in-memory tree and iterate over it using iterwalk() to get the exact same
events without parsing the input again:

>>> context = etree.iterwalk(
... root, events=("start", "end"), tag="element")

>>> for action, elem in context:
... print("%s: %s" % (action, elem.tag))
start: element
end: element
start: element
end: element

Python unicode strings

lxml.etree has broader support for Python unicode strings than the ElementTree library. First of all, where El-
ementTree would raise an exception, the parsers in lxml.etree can handle unicode strings straight away. This is
most helpful for XML snippets embedded in source code using the XML() function:

>>> root = etree.XML(u’<test> \uf8d1 + \uf8d2 </test>’)

This requires, however, that unicode strings do not specify a conflicting encoding themselves and thus lie about
their real encoding:

>>> etree.XML(u’<?xml version="1.0" encoding="ASCII"?>\n’ +
... u’<test> \uf8d1 + \uf8d2 </test>’)
Traceback (most recent call last):

...
ValueError: Unicode strings with encoding declaration are not supported. Please use bytes input or XML fragments without declaration.

Similarly, you will get errors when you try the same with HTML data in a unicode string that specifies a charset
in a meta tag of the header. You should generally avoid converting XML/HTML data to unicode before passing it
into the parsers. It is both slower and error prone.

Serialising to Unicode strings

To serialize the result, you would normally use the tostring() module function, which serializes to plain
ASCII by default or a number of other byte encodings if asked for:

>>> etree.tostring(root)
b’<test>  +  </test>’

>>> etree.tostring(root, encoding=’UTF-8’, xml_declaration=False)
b’<test> \xef\xa3\x91 + \xef\xa3\x92 </test>’

As an extension, lxml.etree recognises the name ’unicode’ as an argument to the encoding parameter to build a
Python unicode representation of a tree:

96

Serialising to Unicode strings Python unicode strings

>>> etree.tostring(root, encoding=’unicode’)
u’<test> \uf8d1 + \uf8d2 </test>’

>>> el = etree.Element("test")
>>> etree.tostring(el, encoding=’unicode’)
u’<test/>’

>>> subel = etree.SubElement(el, "subtest")
>>> etree.tostring(el, encoding=’unicode’)
u’<test><subtest/></test>’

>>> tree = etree.ElementTree(el)
>>> etree.tostring(tree, encoding=’unicode’)
u’<test><subtest/></test>’

The result of tostring(encoding=’unicode’) can be treated like any other Python unicode string and
then passed back into the parsers. However, if you want to save the result to a file or pass it over the network,
you should use write() or tostring() with a byte encoding (typically UTF-8) to serialize the XML. The
main reason is that unicode strings returned by tostring(encoding=’unicode’) are not byte streams and
they never have an XML declaration to specify their encoding. These strings are most likely not parsable by other
XML libraries.

For normal byte encodings, the tostring() function automatically adds a declaration as needed that reflects
the encoding of the returned string. This makes it possible for other parsers to correctly parse the XML byte
stream. Note that using tostring() with UTF-8 is also considerably faster in most cases.

97

Chapter 10

Validation with lxml

Apart from the built-in DTD support in parsers, lxml currently supports three schema languages: DTD, Relax NG
and XML Schema. All three provide identical APIs in lxml, represented by validator classes with the obvious
names.

lxml also provides support for ISO-Schematron, based on the pure-XSLT skeleton implementation of Schematron:

There is also basic support for pre-ISO-Schematron through the libxml2 Schematron features. However, this does
not currently support error reporting in the validation phase due to insufficiencies in the implementation as of
libxml2 2.6.30.

The usual setup procedure:

>>> from lxml import etree

Validation at parse time

The parser in lxml can do on-the-fly validation of a document against a DTD or an XML schema. The DTD is
retrieved automatically based on the DOCTYPE of the parsed document. All you have to do is use a parser that
has DTD validation enabled:

>>> parser = etree.XMLParser(dtd_validation=True)

Obviously, a request for validation enables the DTD loading feature. There are two other options that enable
loading the DTD, but that do not perform any validation. The first is the load_dtd keyword option, which
simply loads the DTD into the parser and makes it available to the document as external subset. You can retrieve
the DTD from the parsed document using the docinfo property of the result ElementTree object. The internal
subset is available as internalDTD, the external subset is provided as externalDTD.

The third way way to activate DTD loading is with the attribute_defaults option, which loads the DTD
and weaves attribute default values into the document. Again, no validation is performed unless explicitly re-
quested.

XML schema is supported in a similar way, but requires an explicit schema to be provided:

>>> schema_root = etree.XML(’’’\
... <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
... <xsd:element name="a" type="xsd:integer"/>
... </xsd:schema>
... ’’’)

98

http://en.wikipedia.org/wiki/Document_Type_Definition
http://www.relaxng.org/
http://www.w3.org/XML/Schema
http://www.schematron.com
http://www.schematron.com/implementation.html

DTD

>>> schema = etree.XMLSchema(schema_root)

>>> parser = etree.XMLParser(schema = schema)
>>> root = etree.fromstring("<a>5", parser)

If the validation fails (be it for a DTD or an XML schema), the parser will raise an exception:

>>> root = etree.fromstring("<a>no int", parser)
Traceback (most recent call last):
lxml.etree.XMLSyntaxError: Element ’a’: ’no int’ is not a valid value of the atomic type ’xs:integer’.

If you want the parser to succeed regardless of the outcome of the validation, you should use a non validating
parser and run the validation separately after parsing the document.

DTD

As described above, the parser support for DTDs depends on internal or external subsets of the XML file. This
means that the XML file itself must either contain a DTD or must reference a DTD to make this work. If you want
to validate an XML document against a DTD that is not referenced by the document itself, you can use the DTD
class.

To use the DTD class, you must first pass a filename or file-like object into the constructor to parse a DTD:

>>> f = StringIO("<!ELEMENT b EMPTY>")
>>> dtd = etree.DTD(f)

Now you can use it to validate documents:

>>> root = etree.XML("")
>>> print(dtd.validate(root))
True

>>> root = etree.XML("<a/>")
>>> print(dtd.validate(root))
False

The reason for the validation failure can be found in the error log:

>>> print(dtd.error_log.filter_from_errors()[0])
<string>:1:0:ERROR:VALID:DTD_NOT_EMPTY: Element b was declared EMPTY this one has content

As an alternative to parsing from a file, you can use the external_id keyword argument to parse from a
catalog. The following example reads the DocBook DTD in version 4.2, if available in the system catalog:

dtd = etree.DTD(external_id = "-//OASIS//DTD DocBook XML V4.2//EN")

The DTD information is available as attributes on the DTD object. The method iterelements provides an
iterator over the element declarations:

>>> dtd = etree.DTD(StringIO(’<!ELEMENT a EMPTY><!ELEMENT b EMPTY>’))
>>> for el in dtd.iterelements():
... print(el.name)
a
b

The method elements returns the element declarations as a list:

>>> dtd = etree.DTD(StringIO(’<!ELEMENT a EMPTY><!ELEMENT b EMPTY>’))

99

DTD

>>> len(dtd.elements())
2

An element declaration object provides the following attributes/methods:

∙ name: The name of the element;

∙ type: The element type, one of “undefined”, “empty”, “any”, “mixed” or “element”;

∙ content: Element content declaration (see below);

∙ iterattributes(): Return an iterator over attribute declarations (see below);

∙ attributes(): Return a list of attribute declarations.

The content attribute contains information about the content model of the element. These element content
declaration objects form a binary tree (via the left and right attributes), that makes it possible to reconstruct
the content model expression. Here’s a list of all attributes:

∙ name: If this object represents an element in the content model expression, name is the name
of the element, otherwise it is None;

∙ type: The type of the node: one of “pcdata”, “element”, “seq” or “or”;

∙ occur: How often this element (or this combination of elements) may occur: one of “once”,
“opt”, “mult” or “plus”

∙ left: The left hand subexpression

∙ right: The right hand subexpression

For example, the element declaration <!ELEMENT a (a|b)+> results in the following element content decla-
ration objects:

>>> dtd = etree.DTD(StringIO(’<!ELEMENT a (a|b)+>’))
>>> content = dtd.elements()[0].content
>>> content.type, content.occur, content.name
(’or’, ’plus’, None)

>>> left, right = content.left, content.right
>>> left.type, left.occur, left.name
(’element’, ’once’, ’a’)
>>> right.type, right.occur, right.name
(’element’, ’once’, ’b’)

Attributes declarations have the following attributes/methods:

∙ name: The name of the attribute;

∙ elemname: The name of the element the attribute belongs to;

∙ type: The attribute type, one of “cdata”, “id”, “idref”, “idrefs”, “entity”, “entities”, “nmtoken”,
“nmtokens”, “enumeration” or “notation”;

∙ default: The type of the default value, one of “none”, “required”, “implied” or “fixed”;

∙ defaultValue: The default value;

∙ itervalues(): Return an iterator over the allowed attribute values (if the attribute if of type
“enumeration”);

∙ values(): Return a list of allowed attribute values.

100

RelaxNG

Entity declarations are available via the iterentities and entities methods:

>>> dtd = etree.DTD(StringIO(’<!ENTITY hurz "@">’))
>>> entity = dtd.entities()[0]
>>> entity.name, entity.orig, entity.content
(’hurz’, ’@’, ’@’)

RelaxNG

The RelaxNG class takes an ElementTree object to construct a Relax NG validator:

>>> f = StringIO(’’’\
... <element name="a" xmlns="http://relaxng.org/ns/structure/1.0">
... <zeroOrMore>
... <element name="b">
... <text />
... </element>
... </zeroOrMore>
... </element>
... ’’’)
>>> relaxng_doc = etree.parse(f)
>>> relaxng = etree.RelaxNG(relaxng_doc)

Alternatively, pass a filename to the file keyword argument to parse from a file. This also enables correct
handling of include files from within the RelaxNG parser.

You can then validate some ElementTree document against the schema. You’ll get back True if the document is
valid against the Relax NG schema, and False if not:

>>> valid = StringIO(’<a>’)
>>> doc = etree.parse(valid)
>>> relaxng.validate(doc)
True

>>> invalid = StringIO(’<a><c></c>’)
>>> doc2 = etree.parse(invalid)
>>> relaxng.validate(doc2)
False

Calling the schema object has the same effect as calling its validate method. This is sometimes used in conditional
statements:

>>> invalid = StringIO(’<a><c></c>’)
>>> doc2 = etree.parse(invalid)
>>> if not relaxng(doc2):
... print("invalid!")
invalid!

If you prefer getting an exception when validating, you can use the assert_ or assertValid methods:

>>> relaxng.assertValid(doc2)
Traceback (most recent call last):

...
lxml.etree.DocumentInvalid: Did not expect element c there, line 1

>>> relaxng.assert_(doc2)

101

XMLSchema

Traceback (most recent call last):
...

AssertionError: Did not expect element c there, line 1

If you want to find out why the validation failed in the second case, you can look up the error log of the validation
process and check it for relevant messages:

>>> log = relaxng.error_log
>>> print(log.last_error)
<string>:1:0:ERROR:RELAXNGV:RELAXNG_ERR_ELEMWRONG: Did not expect element c there

You can see that the error (ERROR) happened during RelaxNG validation (RELAXNGV). The message then tells
you what went wrong. You can also look at the error domain and its type directly:

>>> error = log.last_error
>>> print(error.domain_name)
RELAXNGV
>>> print(error.type_name)
RELAXNG_ERR_ELEMWRONG

Note that this error log is local to the RelaxNG object. It will only contain log entries that appeared during the
validation.

Similar to XSLT, there’s also a less efficient but easier shortcut method to do one-shot RelaxNG validation:

>>> doc.relaxng(relaxng_doc)
True
>>> doc2.relaxng(relaxng_doc)
False

libxml2 does not currently support the RelaxNG Compact Syntax. However, the trang translator can convert the
compact syntax to the XML syntax, which can then be used with lxml.

XMLSchema

lxml.etree also has XML Schema (XSD) support, using the class lxml.etree.XMLSchema. The API is very similar
to the Relax NG and DTD classes. Pass an ElementTree object to construct a XMLSchema validator:

>>> f = StringIO(’’’\
... <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
... <xsd:element name="a" type="AType"/>
... <xsd:complexType name="AType">
... <xsd:sequence>
... <xsd:element name="b" type="xsd:string" />
... </xsd:sequence>
... </xsd:complexType>
... </xsd:schema>
... ’’’)
>>> xmlschema_doc = etree.parse(f)
>>> xmlschema = etree.XMLSchema(xmlschema_doc)

You can then validate some ElementTree document with this. Like with RelaxNG, you’ll get back true if the
document is valid against the XML schema, and false if not:

>>> valid = StringIO(’<a>’)
>>> doc = etree.parse(valid)
>>> xmlschema.validate(doc)

102

http://www.thaiopensource.com/relaxng/trang.html
http://www.thaiopensource.com/relaxng/trang.html

Schematron

True

>>> invalid = StringIO(’<a><c></c>’)
>>> doc2 = etree.parse(invalid)
>>> xmlschema.validate(doc2)
False

Calling the schema object has the same effect as calling its validate method. This is sometimes used in conditional
statements:

>>> invalid = StringIO(’<a><c></c>’)
>>> doc2 = etree.parse(invalid)
>>> if not xmlschema(doc2):
... print("invalid!")
invalid!

If you prefer getting an exception when validating, you can use the assert_ or assertValid methods:

>>> xmlschema.assertValid(doc2)
Traceback (most recent call last):

...
lxml.etree.DocumentInvalid: Element ’c’: This element is not expected. Expected is (b)., line 1

>>> xmlschema.assert_(doc2)
Traceback (most recent call last):

...
AssertionError: Element ’c’: This element is not expected. Expected is (b)., line 1

Error reporting works as for the RelaxNG class:

>>> log = xmlschema.error_log
>>> error = log.last_error
>>> print(error.domain_name)
SCHEMASV
>>> print(error.type_name)
SCHEMAV_ELEMENT_CONTENT

If you were to print this log entry, you would get something like the following. Note that the error message
depends on the libxml2 version in use:

<string>:1:ERROR::SCHEMAV_ELEMENT_CONTENT: Element ’c’: This element is not expected. Expected is (b).

Similar to XSLT and RelaxNG, there’s also a less efficient but easier shortcut method to do XML Schema valida-
tion:

>>> doc.xmlschema(xmlschema_doc)
True
>>> doc2.xmlschema(xmlschema_doc)
False

Schematron

From version 2.3 on lxml features ISO-Schematron support built on the de-facto reference implementation of
Schematron, the pure-XSLT-1.0 skeleton implementation. This is provided by the lxml.isoschematron package
that implements the Schematron class, with an API compatible to the other validators’. Pass an Element or
ElementTree object to construct a Schematron validator:

103

http://www.schematron.com
http://www.schematron.com/implementation.html

Schematron

>>> from lxml import isoschematron
>>> f = StringIO(’’’\
... <schema xmlns="http://purl.oclc.org/dsdl/schematron" >
... <pattern id="sum_equals_100_percent">
... <title>Sum equals 100%.</title>
... <rule context="Total">
... <assert test="sum(//Percent)=100">Sum is not 100%.</assert>
... </rule>
... </pattern>
... </schema>
... ’’’)

>>> sct_doc = etree.parse(f)
>>> schematron = isoschematron.Schematron(sct_doc)

You can then validate some ElementTree document with this. Just like with XMLSchema or RelaxNG, you’ll get
back true if the document is valid against the schema, and false if not:

>>> valid = StringIO(’’’\
... <Total>
... <Percent>20</Percent>
... <Percent>30</Percent>
... <Percent>50</Percent>
... </Total>
... ’’’)

>>> doc = etree.parse(valid)
>>> schematron.validate(doc)
True

>>> etree.SubElement(doc.getroot(), "Percent").text = "10"

>>> schematron.validate(doc)
False

Calling the schema object has the same effect as calling its validate method. This can be useful for conditional
statements:

>>> is_valid = isoschematron.Schematron(sct_doc)

>>> if not is_valid(doc):
... print("invalid!")
invalid!

Built on a pure-xslt implementation, the actual validator is created as an XSLT 1.0 stylesheet using these steps:

0. (Extract embedded Schematron from XML Schema or RelaxNG schema)

1. Process inclusions

2. Process abstract patterns

3. Compile the schematron schema to XSLT

To allow more control over the individual steps, isoschematron.Schematron supports an extended API:

The include and expand keyword arguments can be used to switch off steps 1) and 2).

104

Schematron

To set parameters for steps 1), 2) and 3) dictionaries containing parameters for XSLT can be provided using the
keyword arguments include_params, expand_params or compile_params. Schematron automatically
converts these parameters to stylesheet parameters so you need not worry to set string parameters using quotes or
to use XSLT.strparam(). If you ever need to pass an XPath as argument to the XSLT stylesheet you can pass in an
etree.XPath object (see XPath and XSLT with lxml: Stylesheet-parameters for background on this).

The phase parameter of the compile step is additionally exposed as a keyword argument. If set, it overrides
occurrence in compile_params. Note that isoschematron.Schematron might expose more common parameters
as additional keyword args in the future.

By setting store_schematron to True, the (included-and-expanded) schematron document tree is stored and
made available through the schematron property.

Similarly, setting store_xslt to True will result in the validation XSLT document tree being kept; it can be
retrieved through the validator_xslt property.

Finally, with store_report set to True (default: False), the resulting validation report document gets stored
and can be accessed as the validation_report property.

Using the phase parameter of isoschematron.Schematron allows for selective validation of predefined pattern
groups:

>>> f = StringIO(’’’\
... <schema xmlns="http://purl.oclc.org/dsdl/schematron" >
... <phase id="phase.sum_check">
... <active pattern="sum_equals_100_percent"/>
... </phase>
... <phase id="phase.entries_check">
... <active pattern="all_positive"/>
... </phase>
... <pattern id="sum_equals_100_percent">
... <title>Sum equals 100%.</title>
... <rule context="Total">
... <assert test="sum(//Percent)=100">Sum is not 100%.</assert>
... </rule>
... </pattern>
... <pattern id="all_positive">
... <title>All entries must be positive.</title>
... <rule context="Percent">
... <assert test="number(.)>0">Number (<value-of select="."/>) not positive</assert>
... </rule>
... </pattern>
... </schema>
... ’’’)

>>> sct_doc = etree.parse(f)
>>> schematron = isoschematron.Schematron(sct_doc)

>>> valid = StringIO(’’’\
... <Total>
... <Percent>20</Percent>
... <Percent>30</Percent>
... <Percent>50</Percent>
... </Total>
... ’’’)

>>> doc = etree.parse(valid)

105

(Pre-ISO-Schematron)

>>> schematron.validate(doc)
True

>>> invalid_positive = StringIO(’’’\
... <Total>
... <Percent>0</Percent>
... <Percent>50</Percent>
... <Percent>50</Percent>
... </Total>
... ’’’)

>>> doc = etree.parse(invalid_positive)

>>> schematron.validate(doc)
False

If the constraint of Percent entries being positive is not of interest in a certain validation scenario, it can now be
disabled:

>>> selective = isoschematron.Schematron(sct_doc, phase="phase.sum_check")
>>> selective.validate(doc)
True

The usage of validation phases is a unique feature of ISO-Schematron and can be a very powerful tool e.g. for
establishing validation stages or to provide different validators for different “validation audiences”.

(Pre-ISO-Schematron)

Since version 2.0, lxml.etree features pre-ISO-Schematron support, using the class lxml.etree.Schematron. It
requires at least libxml2 2.6.21 to work. The API is the same as for the other validators. Pass an ElementTree
object to construct a Schematron validator:

>>> f = StringIO(’’’\
... <schema xmlns="http://www.ascc.net/xml/schematron" >
... <pattern name="Sum equals 100%.">
... <rule context="Total">
... <assert test="sum(//Percent)=100">Sum is not 100%.</assert>
... </rule>
... </pattern>
... </schema>
... ’’’)

>>> sct_doc = etree.parse(f)
>>> schematron = etree.Schematron(sct_doc)

You can then validate some ElementTree document with this. Like with RelaxNG, you’ll get back true if the
document is valid against the schema, and false if not:

>>> valid = StringIO(’’’\
... <Total>
... <Percent>20</Percent>
... <Percent>30</Percent>
... <Percent>50</Percent>
... </Total>
... ’’’)

106

http://www.ascc.net/xml/schematron

(Pre-ISO-Schematron)

>>> doc = etree.parse(valid)
>>> schematron.validate(doc)
True

>>> etree.SubElement(doc.getroot(), "Percent").text = "10"

>>> schematron.validate(doc)
False

Calling the schema object has the same effect as calling its validate method. This is sometimes used in conditional
statements:

>>> is_valid = etree.Schematron(sct_doc)

>>> if not is_valid(doc):
... print("invalid!")
invalid!

Note that libxml2 restricts error reporting to the parsing step (when creating the Schematron instance). There is
not currently any support for error reporting during validation.

107

Chapter 11

XPath and XSLT with lxml

lxml supports XPath 1.0, XSLT 1.0 and the EXSLT extensions through libxml2 and libxslt in a standards compliant
way.

The usual setup procedure:

>>> from lxml import etree

XPath

lxml.etree supports the simple path syntax of the find, findall and findtext methods on ElementTree and Element,
as known from the original ElementTree library (ElementPath). As an lxml specific extension, these classes also
provide an xpath() method that supports expressions in the complete XPath syntax, as well as custom extension
functions.

There are also specialized XPath evaluator classes that are more efficient for frequent evaluation: XPath and
XPathEvaluator. See the performance comparison to learn when to use which. Their semantics when used
on Elements and ElementTrees are the same as for the xpath() method described here.

The xpath() method

For ElementTree, the xpath method performs a global XPath query against the document (if absolute) or against
the root node (if relative):

>>> f = StringIO(’<foo><bar></bar></foo>’)
>>> tree = etree.parse(f)

>>> r = tree.xpath(’/foo/bar’)
>>> len(r)
1
>>> r[0].tag
’bar’

>>> r = tree.xpath(’bar’)
>>> r[0].tag
’bar’

108

http://effbot.org/zone/element.htm#searching-for-subelements
http://effbot.org/zone/element-xpath.htm

Namespaces and prefixes XPath

When xpath() is used on an Element, the XPath expression is evaluated against the element (if relative) or
against the root tree (if absolute):

>>> root = tree.getroot()
>>> r = root.xpath(’bar’)
>>> r[0].tag
’bar’

>>> bar = root[0]
>>> r = bar.xpath(’/foo/bar’)
>>> r[0].tag
’bar’

>>> tree = bar.getroottree()
>>> r = tree.xpath(’/foo/bar’)
>>> r[0].tag
’bar’

The xpath() method has support for XPath variables:

>>> expr = "//*[local-name() = $name]"

>>> print(root.xpath(expr, name = "foo")[0].tag)
foo

>>> print(root.xpath(expr, name = "bar")[0].tag)
bar

>>> print(root.xpath("$text", text = "Hello World!"))
Hello World!

Namespaces and prefixes

If your XPath expression uses namespace prefixes, you must define them in a prefix mapping. To this end, pass a
dictionary to the namespaces keyword argument that maps the namespace prefixes used in the XPath expression
to namespace URIs:

>>> f = StringIO(’’’\
... <a:foo xmlns:a="http://codespeak.net/ns/test1"
... xmlns:b="http://codespeak.net/ns/test2">
... <b:bar>Text</b:bar>
... </a:foo>
... ’’’)
>>> doc = etree.parse(f)

>>> r = doc.xpath(’/t:foo/b:bar’,
... namespaces={’t’: ’http://codespeak.net/ns/test1’,
... ’b’: ’http://codespeak.net/ns/test2’})
>>> len(r)
1
>>> r[0].tag
’{http://codespeak.net/ns/test2}bar’
>>> r[0].text
’Text’

109

XPath return values XPath

The prefixes you choose here are not linked to the prefixes used inside the XML document. The document may
define whatever prefixes it likes, including the empty prefix, without breaking the above code.

Note that XPath does not have a notion of a default namespace. The empty prefix is therefore undefined for XPath
and cannot be used in namespace prefix mappings.

There is also an optional extensions argument which is used to define custom extension functions in Python
that are local to this evaluation. The namespace prefixes that they use in the XPath expression must also be defined
in the namespace prefix mapping.

XPath return values

The return value types of XPath evaluations vary, depending on the XPath expression used:

∙ True or False, when the XPath expression has a boolean result

∙ a float, when the XPath expression has a numeric result (integer or float)

∙ a ’smart’ string (as described below), when the XPath expression has a string result.

∙ a list of items, when the XPath expression has a list as result. The items may include Elements (also
comments and processing instructions), strings and tuples. Text nodes and attributes in the result are returned
as ’smart’ string values. Namespace declarations are returned as tuples of strings: (prefix, URI).

XPath string results are ’smart’ in that they provide a getparent() method that knows their origin:

∙ for attribute values, result.getparent() returns the Element that carries them. An example is
//foo/@attribute, where the parent would be a foo Element.

∙ for the text() function (as in //text()), it returns the Element that contains the text or tail that was
returned.

You can distinguish between different text origins with the boolean properties is_text, is_tail and is_attribute.

Note that getparent() may not always return an Element. For example, the XPath functions string() and
concat() will construct strings that do not have an origin. For them, getparent() will return None.

There are certain cases where the smart string behaviour is undesirable. For example, it means that the tree will
be kept alive by the string, which may have a considerable memory impact in the case that the string value is the
only thing in the tree that is actually of interest. For these cases, you can deactivate the parental relationship using
the keyword argument smart_strings.

>>> root = etree.XML("<root><a>TEXT</root>")

>>> find_text = etree.XPath("//text()")
>>> text = find_text(root)[0]
>>> print(text)
TEXT
>>> print(text.getparent().text)
TEXT

>>> find_text = etree.XPath("//text()", smart_strings=False)
>>> text = find_text(root)[0]
>>> print(text)
TEXT
>>> hasattr(text, ’getparent’)
False

110

Generating XPath expressions XPath

Generating XPath expressions

ElementTree objects have a method getpath(element), which returns a structural, absolute XPath expression
to find that element:

>>> a = etree.Element("a")
>>> b = etree.SubElement(a, "b")
>>> c = etree.SubElement(a, "c")
>>> d1 = etree.SubElement(c, "d")
>>> d2 = etree.SubElement(c, "d")

>>> tree = etree.ElementTree(c)
>>> print(tree.getpath(d2))
/c/d[2]
>>> tree.xpath(tree.getpath(d2)) == [d2]
True

The XPath class

The XPath class compiles an XPath expression into a callable function:

>>> root = etree.XML("<root><a></root>")

>>> find = etree.XPath("//b")
>>> print(find(root)[0].tag)
b

The compilation takes as much time as in the xpath() method, but it is done only once per class instantiation.
This makes it especially efficient for repeated evaluation of the same XPath expression.

Just like the xpath() method, the XPath class supports XPath variables:

>>> count_elements = etree.XPath("count(//*[local-name() = $name])")

>>> print(count_elements(root, name = "a"))
1.0
>>> print(count_elements(root, name = "b"))
2.0

This supports very efficient evaluation of modified versions of an XPath expression, as compilation is still only
required once.

Prefix-to-namespace mappings can be passed as second parameter:

>>> root = etree.XML("<root xmlns=’NS’><a></root>")

>>> find = etree.XPath("//n:b", namespaces={’n’:’NS’})
>>> print(find(root)[0].tag)
{NS}b

Regular expressions in XPath

By default, XPath supports regular expressions in the EXSLT namespace:

111

http://www.exslt.org/

The XPathEvaluator classes XPath

>>> regexpNS = "http://exslt.org/regular-expressions"
>>> find = etree.XPath("//*[re:test(., ’^abc$’, ’i’)]",
... namespaces={’re’:regexpNS})

>>> root = etree.XML("<root><a>aBaBc</root>")
>>> print(find(root)[0].text)
aBc

You can disable this with the boolean keyword argument regexp which defaults to True.

The XPathEvaluator classes

lxml.etree provides two other efficient XPath evaluators that work on ElementTrees or Elements respectively:
XPathDocumentEvaluator and XPathElementEvaluator. They are automatically selected if you use
the XPathEvaluator helper for instantiation:

>>> root = etree.XML("<root><a></root>")
>>> xpatheval = etree.XPathEvaluator(root)

>>> print(isinstance(xpatheval, etree.XPathElementEvaluator))
True

>>> print(xpatheval("//b")[0].tag)
b

This class provides efficient support for evaluating different XPath expressions on the same Element or Element-
Tree.

ETXPath

ElementTree supports a language named ElementPath in its find*() methods. One of the main differences
between XPath and ElementPath is that the XPath language requires an indirection through prefixes for namespace
support, whereas ElementTree uses the Clark notation ({ns}name) to avoid prefixes completely. The other major
difference regards the capabilities of both path languages. Where XPath supports various sophisticated ways of
restricting the result set through functions and boolean expressions, ElementPath only supports pure path traversal
without nesting or further conditions. So, while the ElementPath syntax is self-contained and therefore easier to
write and handle, XPath is much more powerful and expressive.

lxml.etree bridges this gap through the class ETXPath, which accepts XPath expressions with namespaces in
Clark notation. It is identical to the XPath class, except for the namespace notation. Normally, you would write:

>>> root = etree.XML("<root xmlns=’ns’><a></root>")

>>> find = etree.XPath("//p:b", namespaces={’p’ : ’ns’})
>>> print(find(root)[0].tag)
{ns}b

ETXPath allows you to change this to:

>>> find = etree.ETXPath("//{ns}b")
>>> print(find(root)[0].tag)
{ns}b

112

http://effbot.org/zone/element-xpath.htm

Error handling XSLT

Error handling

lxml.etree raises exceptions when errors occur while parsing or evaluating an XPath expression:

>>> find = etree.XPath("\\")
Traceback (most recent call last):

...
lxml.etree.XPathSyntaxError: Invalid expression

lxml will also try to give you a hint what went wrong, so if you pass a more complex expression, you may get a
somewhat more specific error:

>>> find = etree.XPath("//*[1.1.1]")
Traceback (most recent call last):

...
lxml.etree.XPathSyntaxError: Invalid predicate

During evaluation, lxml will emit an XPathEvalError on errors:

>>> find = etree.XPath("//ns:a")
>>> find(root)
Traceback (most recent call last):

...
lxml.etree.XPathEvalError: Undefined namespace prefix

This works for the XPath class, however, the other evaluators (including the xpath() method) are one-shot
operations that do parsing and evaluation in one step. They therefore raise evaluation exceptions in all cases:

>>> root = etree.Element("test")
>>> find = root.xpath("//*[1.1.1]")
Traceback (most recent call last):

...
lxml.etree.XPathEvalError: Invalid predicate

>>> find = root.xpath("//ns:a")
Traceback (most recent call last):

...
lxml.etree.XPathEvalError: Undefined namespace prefix

>>> find = root.xpath("\\")
Traceback (most recent call last):

...
lxml.etree.XPathEvalError: Invalid expression

Note that lxml versions before 1.3 always raised an XPathSyntaxError for all errors, including evaluation
errors. The best way to support older versions is to except on the superclass XPathError.

XSLT

lxml.etree introduces a new class, lxml.etree.XSLT. The class can be given an ElementTree or Element object to
construct an XSLT transformer:

>>> xslt_root = etree.XML(’’’\
... <xsl:stylesheet version="1.0"
... xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
... <xsl:template match="/">

113

XSLT result objects XSLT

... <foo><xsl:value-of select="/a/b/text()" /></foo>

... </xsl:template>

... </xsl:stylesheet>’’’)
>>> transform = etree.XSLT(xslt_root)

You can then run the transformation on an ElementTree document by simply calling it, and this results in another
ElementTree object:

>>> f = StringIO(’<a>Text’)
>>> doc = etree.parse(f)
>>> result_tree = transform(doc)

By default, XSLT supports all extension functions from libxslt and libexslt as well as Python regular expressions
through the EXSLT regexp functions. Also see the documentation on custom extension functions, XSLT extension
elements and document resolvers. There is a separate section on controlling access to external documents and
resources.

XSLT result objects

The result of an XSL transformation can be accessed like a normal ElementTree document:

>>> root = etree.XML(’<a>Text’)
>>> result = transform(root)

>>> result.getroot().text
’Text’

but, as opposed to normal ElementTree objects, can also be turned into an (XML or text) string by applying the
str() function:

>>> str(result)
’<?xml version="1.0"?>\n<foo>Text</foo>\n’

The result is always a plain string, encoded as requested by the xsl:output element in the stylesheet. If
you want a Python unicode string instead, you should set this encoding to UTF-8 (unless the ASCII default is
sufficient). This allows you to call the builtin unicode() function on the result:

>>> unicode(result)
u’<?xml version="1.0"?>\n<foo>Text</foo>\n’

You can use other encodings at the cost of multiple recoding. Encodings that are not supported by Python will
result in an error:

>>> xslt_tree = etree.XML(’’’\
... <xsl:stylesheet version="1.0"
... xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
... <xsl:output encoding="UCS4"/>
... <xsl:template match="/">
... <foo><xsl:value-of select="/a/b/text()" /></foo>
... </xsl:template>
... </xsl:stylesheet>’’’)
>>> transform = etree.XSLT(xslt_tree)

>>> result = transform(doc)
>>> unicode(result)
Traceback (most recent call last):

...

114

http://www.exslt.org/regexp/

Stylesheet parameters XSLT

LookupError: unknown encoding: UCS4

Stylesheet parameters

It is possible to pass parameters, in the form of XPath expressions, to the XSLT template:

>>> xslt_tree = etree.XML(’’’\
... <xsl:stylesheet version="1.0"
... xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
... <xsl:param name="a" />
... <xsl:template match="/">
... <foo><xsl:value-of select="$a" /></foo>
... </xsl:template>
... </xsl:stylesheet>’’’)
>>> transform = etree.XSLT(xslt_tree)
>>> doc_root = etree.XML(’<a>Text’)

The parameters are passed as keyword parameters to the transform call. First, let’s try passing in a simple integer
expression:

>>> result = transform(doc_root, a="5")
>>> str(result)
’<?xml version="1.0"?>\n<foo>5</foo>\n’

You can use any valid XPath expression as parameter value:

>>> result = transform(doc_root, a="/a/b/text()")
>>> str(result)
’<?xml version="1.0"?>\n<foo>Text</foo>\n’

It’s also possible to pass an XPath object as a parameter:

>>> result = transform(doc_root, a=etree.XPath("/a/b/text()"))
>>> str(result)
’<?xml version="1.0"?>\n<foo>Text</foo>\n’

Passing a string expression looks like this:

>>> result = transform(doc_root, a="’A’")
>>> str(result)
’<?xml version="1.0"?>\n<foo>A</foo>\n’

To pass a string that (potentially) contains quotes, you can use the .strparam() class method. Note that it does
not escape the string. Instead, it returns an opaque object that keeps the string value.

>>> plain_string_value = etree.XSLT.strparam(
... """ It’s "Monty Python" """)
>>> result = transform(doc_root, a=plain_string_value)
>>> str(result)
’<?xml version="1.0"?>\n<foo> It\’s "Monty Python" </foo>\n’

If you need to pass parameters that are not legal Python identifiers, pass them inside of a dictionary:

>>> transform = etree.XSLT(etree.XML(’’’\
... <xsl:stylesheet version="1.0"
... xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
... <xsl:param name="non-python-identifier" />
... <xsl:template match="/">

115

Errors and messages XSLT

... <foo><xsl:value-of select="$non-python-identifier" /></foo>

... </xsl:template>

... </xsl:stylesheet>’’’))

>>> result = transform(doc_root, **{’non-python-identifier’: ’5’})
>>> str(result)
’<?xml version="1.0"?>\n<foo>5</foo>\n’

Errors and messages

Like most of the processing oriented objects in lxml.etree, XSLT provides an error log that lists messages and
error output from the last run. See the parser documentation for a description of the error log.

>>> xslt_root = etree.XML(’’’\
... <xsl:stylesheet version="1.0"
... xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
... <xsl:template match="/">
... <xsl:message terminate="no">STARTING</xsl:message>
... <foo><xsl:value-of select="/a/b/text()" /></foo>
... <xsl:message terminate="no">DONE</xsl:message>
... </xsl:template>
... </xsl:stylesheet>’’’)
>>> transform = etree.XSLT(xslt_root)

>>> doc_root = etree.XML(’<a>Text’)
>>> result = transform(doc_root)
>>> str(result)
’<?xml version="1.0"?>\n<foo>Text</foo>\n’

>>> print(transform.error_log)
<string>:0:0:ERROR:XSLT:ERR_OK: STARTING
<string>:0:0:ERROR:XSLT:ERR_OK: DONE

>>> for entry in transform.error_log:
... print(’message from line %s, col %s: %s’ % (
... entry.line, entry.column, entry.message))
... print(’domain: %s (%d)’ % (entry.domain_name, entry.domain))
... print(’type: %s (%d)’ % (entry.type_name, entry.type))
... print(’level: %s (%d)’ % (entry.level_name, entry.level))
... print(’filename: %s’ % entry.filename)
message from line 0, col 0: STARTING
domain: XSLT (22)
type: ERR_OK (0)
level: ERROR (2)
filename: <string>
message from line 0, col 0: DONE
domain: XSLT (22)
type: ERR_OK (0)
level: ERROR (2)
filename: <string>

Note that there is no way in XSLT to distinguish between user messages, warnings and error messages that
occurred during the run. libxslt simply does not provide this information. You can partly work around this
limitation by making your own messages uniquely identifiable, e.g. with a common text prefix.

116

The xslt() tree method XSLT

The xslt() tree method

There’s also a convenience method on ElementTree objects for doing XSL transformations. This is less efficient
if you want to apply the same XSL transformation to multiple documents, but is shorter to write for one-shot
operations, as you do not have to instantiate a stylesheet yourself:

>>> result = doc.xslt(xslt_tree, a="’A’")
>>> str(result)
’<?xml version="1.0"?>\n<foo>A</foo>\n’

This is a shortcut for the following code:

>>> transform = etree.XSLT(xslt_tree)
>>> result = transform(doc, a="’A’")
>>> str(result)
’<?xml version="1.0"?>\n<foo>A</foo>\n’

Dealing with stylesheet complexity

Some applications require a larger set of rather diverse stylesheets. lxml.etree allows you to deal with this in a
number of ways. Here are some ideas to try.

The most simple way to reduce the diversity is by using XSLT parameters that you pass at call time to configure
the stylesheets. The partial() function in the functools module of Python 2.5 may come in handy here. It
allows you to bind a set of keyword arguments (i.e. stylesheet parameters) to a reference of a callable stylesheet.
The same works for instances of the XPath() evaluator, obviously.

You may also consider creating stylesheets programmatically. Just create an XSL tree, e.g. from a parsed template,
and then add or replace parts as you see fit. Passing an XSL tree into the XSLT() constructor multiple times
will create independent stylesheets, so later modifications of the tree will not be reflected in the already created
stylesheets. This makes stylesheet generation very straight forward.

A third thing to remember is the support for custom extension functions and XSLT extension elements. Some
things are much easier to express in XSLT than in Python, while for others it is the complete opposite. Finding
the right mixture of Python code and XSL code can help a great deal in keeping applications well designed and
maintainable.

Profiling

If you want to know how your stylesheet performed, pass the profile_run keyword to the transform:

>>> result = transform(doc, a="/a/b/text()", profile_run=True)
>>> profile = result.xslt_profile

The value of the xslt_profile property is an ElementTree with profiling data about each template, similar to
the following:

<profile>
<template rank="1" match="/" name="" mode="" calls="1" time="1" average="1"/>

</profile>

Note that this is a read-only document. You must not move any of its elements to other documents. Please
deep-copy the document if you need to modify it. If you want to free it from memory, just do:

>>> del result.xslt_profile

117

Chapter 12

lxml.objectify

Author: Stefan Behnel
Author: Holger Joukl

lxml supports an alternative API similar to the Amara bindery or gnosis.xml.objectify through a custom Element
implementation. The main idea is to hide the usage of XML behind normal Python objects, sometimes referred to
as data-binding. It allows you to use XML as if you were dealing with a normal Python object hierarchy.

Accessing the children of an XML element deploys object attribute access. If there are multiple children with the
same name, slicing and indexing can be used. Python data types are extracted from XML content automatically
and made available to the normal Python operators.

To set up and use objectify, you need both the lxml.etree module and lxml.objectify:

>>> from lxml import etree
>>> from lxml import objectify

The objectify API is very different from the ElementTree API. If it is used, it should not be mixed with other
element implementations (such as trees parsed with lxml.etree), to avoid non-obvious behaviour.

The benchmark page has some hints on performance optimisation of code using lxml.objectify.

To make the doctests in this document look a little nicer, we also use this:

>>> import lxml.usedoctest

Imported from within a doctest, this relieves us from caring about the exact formatting of XML output.

The lxml.objectify API

In lxml.objectify, element trees provide an API that models the behaviour of normal Python object trees as
closely as possible.

Element access through object attributes

The main idea behind the objectifyAPI is to hide XML element access behind the usual object attribute access
pattern. Asking an element for an attribute will return the sequence of children with corresponding tag names:

118

http://uche.ogbuji.net/tech/4suite/amara/
http://gnosis.cx/download/

Element access through object attributes The lxml.objectify API

>>> root = objectify.Element("root")
>>> b = objectify.SubElement(root, "b")
>>> print(root.b[0].tag)
b
>>> root.index(root.b[0])
0
>>> b = objectify.SubElement(root, "b")
>>> print(root.b[0].tag)
b
>>> print(root.b[1].tag)
b
>>> root.index(root.b[1])
1

For convenience, you can omit the index ’0’ to access the first child:

>>> print(root.b.tag)
b
>>> root.index(root.b)
0
>>> del root.b

Iteration and slicing also obey the requested tag:

>>> x1 = objectify.SubElement(root, "x")
>>> x2 = objectify.SubElement(root, "x")
>>> x3 = objectify.SubElement(root, "x")

>>> [el.tag for el in root.x]
[’x’, ’x’, ’x’]

>>> [el.tag for el in root.x[1:3]]
[’x’, ’x’]

>>> [el.tag for el in root.x[-1:]]
[’x’]

>>> del root.x[1:2]
>>> [el.tag for el in root.x]
[’x’, ’x’]

If you want to iterate over all children or need to provide a specific namespace for the tag, use the iterchildren()
method. Like the other methods for iteration, it supports an optional tag keyword argument:

>>> [el.tag for el in root.iterchildren()]
[’b’, ’x’, ’x’]

>>> [el.tag for el in root.iterchildren(tag=’b’)]
[’b’]

>>> [el.tag for el in root.b]
[’b’]

XML attributes are accessed as in the normal ElementTree API:

>>> c = objectify.SubElement(root, "c", myattr="someval")
>>> print(root.c.get("myattr"))
someval

119

Element access through object attributes The lxml.objectify API

>>> root.c.set("c", "oh-oh")
>>> print(root.c.get("c"))
oh-oh

In addition to the normal ElementTree API for appending elements to trees, subtrees can also be added by assign-
ing them to object attributes. In this case, the subtree is automatically deep copied and the tag name of its root is
updated to match the attribute name:

>>> el = objectify.Element("yet_another_child")
>>> root.new_child = el
>>> print(root.new_child.tag)
new_child
>>> print(el.tag)
yet_another_child

>>> root.y = [objectify.Element("y"), objectify.Element("y")]
>>> [el.tag for el in root.y]
[’y’, ’y’]

The latter is a short form for operations on the full slice:

>>> root.y[:] = [objectify.Element("y")]
>>> [el.tag for el in root.y]
[’y’]

You can also replace children that way:

>>> child1 = objectify.SubElement(root, "child")
>>> child2 = objectify.SubElement(root, "child")
>>> child3 = objectify.SubElement(root, "child")

>>> el = objectify.Element("new_child")
>>> subel = objectify.SubElement(el, "sub")

>>> root.child = el
>>> print(root.child.sub.tag)
sub

>>> root.child[2] = el
>>> print(root.child[2].sub.tag)
sub

Note that special care must be taken when changing the tag name of an element:

>>> print(root.b.tag)
b
>>> root.b.tag = "notB"
>>> root.b
Traceback (most recent call last):

...
AttributeError: no such child: b
>>> print(root.notB.tag)
notB

120

Creating objectify trees The lxml.objectify API

Creating objectify trees

As with lxml.etree, you can either create an objectify tree by parsing an XML document or by building
one from scratch. To parse a document, just use the parse() or fromstring() functions of the module:

>>> fileobject = StringIO(’<test/>’)

>>> tree = objectify.parse(fileobject)
>>> print(isinstance(tree.getroot(), objectify.ObjectifiedElement))
True

>>> root = objectify.fromstring(’<test/>’)
>>> print(isinstance(root, objectify.ObjectifiedElement))
True

To build a new tree in memory, objectify replicates the standard factory function Element() from lxml.etree:

>>> obj_el = objectify.Element("new")
>>> print(isinstance(obj_el, objectify.ObjectifiedElement))
True

After creating such an Element, you can use the usual API of lxml.etree to add SubElements to the tree:

>>> child = objectify.SubElement(obj_el, "newchild", attr="value")

New subelements will automatically inherit the objectify behaviour from their tree. However, all independent
elements that you create through the Element() factory of lxml.etree (instead of objectify) will not support the
objectify API by themselves:

>>> subel = objectify.SubElement(obj_el, "sub")
>>> print(isinstance(subel, objectify.ObjectifiedElement))
True

>>> independent_el = etree.Element("new")
>>> print(isinstance(independent_el, objectify.ObjectifiedElement))
False

Tree generation with the E-factory

To simplify the generation of trees even further, you can use the E-factory:

>>> E = objectify.E
>>> root = E.root(
... E.a(5),
... E.b(6.1),
... E.c(True),
... E.d("how", tell="me")
...)

>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:py="http://codespeak.net/lxml/objectify/pytype">

<a py:pytype="int">5
<b py:pytype="float">6.1
<c py:pytype="bool">true</c>
<d py:pytype="str" tell="me">how</d>

</root>

121

Namespace handling The lxml.objectify API

This allows you to write up a specific language in tags:

>>> ROOT = objectify.E.root
>>> TITLE = objectify.E.title
>>> HOWMANY = getattr(objectify.E, "how-many")

>>> root = ROOT(
... TITLE("The title"),
... HOWMANY(5)
...)

>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:py="http://codespeak.net/lxml/objectify/pytype">

<title py:pytype="str">The title</title>
<how-many py:pytype="int">5</how-many>

</root>

objectify.E is an instance of objectify.ElementMaker. By default, it creates pytype annotated Ele-
ments without a namespace. You can switch off the pytype annotation by passing False to the annotate keyword
argument of the constructor. You can also pass a default namespace and an nsmap:

>>> myE = objectify.ElementMaker(annotate=False,
... namespace="http://my/ns", nsmap={None : "http://my/ns"})

>>> root = myE.root(myE.someint(2))

>>> print(etree.tostring(root, pretty_print=True))
<root xmlns="http://my/ns">

<someint>2</someint>
</root>

Namespace handling

During tag lookups, namespaces are handled mostly behind the scenes. If you access a child of an Element without
specifying a namespace, the lookup will use the namespace of the parent:

>>> root = objectify.Element("{http://ns/}root")
>>> b = objectify.SubElement(root, "{http://ns/}b")
>>> c = objectify.SubElement(root, "{http://other/}c")

>>> print(root.b.tag)
{http://ns/}b

Note that the SubElement() factory of lxml.etree does not inherit any namespaces when creating a new
subelement. Element creation must be explicit about the namespace, and is simplified through the E-factory as
described above.

Lookups, however, inherit namespaces implicitly:

>>> print(root.b.tag)
{http://ns/}b

>>> print(root.c)
Traceback (most recent call last):

...
AttributeError: no such child: {http://ns/}c

122

Asserting a Schema

To access an element in a different namespace than its parent, you can use getattr():

>>> c = getattr(root, "{http://other/}c")
>>> print(c.tag)
{http://other/}c

For convenience, there is also a quick way through item access:

>>> c = root["{http://other/}c"]
>>> print(c.tag)
{http://other/}c

The same approach must be used to access children with tag names that are not valid Python identifiers:

>>> el = objectify.SubElement(root, "{http://ns/}tag-name")
>>> print(root["tag-name"].tag)
{http://ns/}tag-name

>>> new_el = objectify.Element("{http://ns/}new-element")
>>> el = objectify.SubElement(new_el, "{http://ns/}child")
>>> el = objectify.SubElement(new_el, "{http://ns/}child")
>>> el = objectify.SubElement(new_el, "{http://ns/}child")

>>> root["tag-name"] = [new_el, new_el]
>>> print(len(root["tag-name"]))
2
>>> print(root["tag-name"].tag)
{http://ns/}tag-name

>>> print(len(root["tag-name"].child))
3
>>> print(root["tag-name"].child.tag)
{http://ns/}child
>>> print(root["tag-name"][1].child.tag)
{http://ns/}child

or for names that have a special meaning in lxml.objectify:

>>> root = objectify.XML("<root><text>TEXT</text></root>")

>>> print(root.text.text)
Traceback (most recent call last):

...
AttributeError: ’NoneType’ object has no attribute ’text’

>>> print(root["text"].text)
TEXT

Asserting a Schema

When dealing with XML documents from different sources, you will often require them to follow a common
schema. In lxml.objectify, this directly translates to enforcing a specific object tree, i.e. expected object attributes
are ensured to be there and to have the expected type. This can easily be achieved through XML Schema validation
at parse time. Also see the documentation on validation on this topic.

First of all, we need a parser that knows our schema, so let’s say we parse the schema from a file-like object (or

123

ObjectPath

file or filename):

>>> f = StringIO(’’’\
... <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
... <xsd:element name="a" type="AType"/>
... <xsd:complexType name="AType">
... <xsd:sequence>
... <xsd:element name="b" type="xsd:string" />
... </xsd:sequence>
... </xsd:complexType>
... </xsd:schema>
... ’’’)
>>> schema = etree.XMLSchema(file=f)

When creating the validating parser, we must make sure it returns objectify trees. This is best done with the
makeparser() function:

>>> parser = objectify.makeparser(schema = schema)

Now we can use it to parse a valid document:

>>> xml = "<a>test"
>>> a = objectify.fromstring(xml, parser)

>>> print(a.b)
test

Or an invalid document:

>>> xml = "<a>test<c/>"
>>> a = objectify.fromstring(xml, parser)
Traceback (most recent call last):
lxml.etree.XMLSyntaxError: Element ’c’: This element is not expected.

Note that the same works for parse-time DTD validation, except that DTDs do not support any data types by
design.

ObjectPath

For both convenience and speed, objectify supports its own path language, represented by the ObjectPath
class:

>>> root = objectify.Element("{http://ns/}root")
>>> b1 = objectify.SubElement(root, "{http://ns/}b")
>>> c = objectify.SubElement(b1, "{http://ns/}c")
>>> b2 = objectify.SubElement(root, "{http://ns/}b")
>>> d = objectify.SubElement(root, "{http://other/}d")

>>> path = objectify.ObjectPath("root.b.c")
>>> print(path)
root.b.c
>>> path.hasattr(root)
True
>>> print(path.find(root).tag)
{http://ns/}c

124

ObjectPath

>>> find = objectify.ObjectPath("root.b.c")
>>> print(find(root).tag)
{http://ns/}c

>>> find = objectify.ObjectPath("root.{http://other/}d")
>>> print(find(root).tag)
{http://other/}d

>>> find = objectify.ObjectPath("root.{not}there")
>>> print(find(root).tag)
Traceback (most recent call last):

...
AttributeError: no such child: {not}there

>>> find = objectify.ObjectPath("{not}there")
>>> print(find(root).tag)
Traceback (most recent call last):

...
ValueError: root element does not match: need {not}there, got {http://ns/}root

>>> find = objectify.ObjectPath("root.b[1]")
>>> print(find(root).tag)
{http://ns/}b

>>> find = objectify.ObjectPath("root.{http://ns/}b[1]")
>>> print(find(root).tag)
{http://ns/}b

Apart from strings, ObjectPath also accepts lists of path segments:

>>> find = objectify.ObjectPath([’root’, ’b’, ’c’])
>>> print(find(root).tag)
{http://ns/}c

>>> find = objectify.ObjectPath([’root’, ’{http://ns/}b[1]’])
>>> print(find(root).tag)
{http://ns/}b

You can also use relative paths starting with a ’.’ to ignore the actual root element and only inherit its namespace:

>>> find = objectify.ObjectPath(".b[1]")
>>> print(find(root).tag)
{http://ns/}b

>>> find = objectify.ObjectPath([’’, ’b[1]’])
>>> print(find(root).tag)
{http://ns/}b

>>> find = objectify.ObjectPath(".unknown[1]")
>>> print(find(root).tag)
Traceback (most recent call last):

...
AttributeError: no such child: {http://ns/}unknown

>>> find = objectify.ObjectPath(".{http://other/}unknown[1]")
>>> print(find(root).tag)
Traceback (most recent call last):

125

ObjectPath

...
AttributeError: no such child: {http://other/}unknown

For convenience, a single dot represents the empty ObjectPath (identity):

>>> find = objectify.ObjectPath(".")
>>> print(find(root).tag)
{http://ns/}root

ObjectPath objects can be used to manipulate trees:

>>> root = objectify.Element("{http://ns/}root")

>>> path = objectify.ObjectPath(".some.child.{http://other/}unknown")
>>> path.hasattr(root)
False
>>> path.find(root)
Traceback (most recent call last):

...
AttributeError: no such child: {http://ns/}some

>>> path.setattr(root, "my value") # creates children as necessary
>>> path.hasattr(root)
True
>>> print(path.find(root).text)
my value
>>> print(root.some.child["{http://other/}unknown"].text)
my value

>>> print(len(path.find(root)))
1
>>> path.addattr(root, "my new value")
>>> print(len(path.find(root)))
2
>>> [el.text for el in path.find(root)]
[’my value’, ’my new value’]

As with attribute assignment, setattr() accepts lists:

>>> path.setattr(root, ["v1", "v2", "v3"])
>>> [el.text for el in path.find(root)]
[’v1’, ’v2’, ’v3’]

Note, however, that indexing is only supported in this context if the children exist. Indexing of non existing
children will not extend or create a list of such children but raise an exception:

>>> path = objectify.ObjectPath(".{non}existing[1]")
>>> path.setattr(root, "my value")
Traceback (most recent call last):

...
TypeError: creating indexed path attributes is not supported

It is worth noting that ObjectPath does not depend on the objectify module or the ObjectifiedElement imple-
mentation. It can also be used in combination with Elements from the normal lxml.etree API.

126

Python data types

Python data types

The objectify module knows about Python data types and tries its best to let element content behave like them.
For example, they support the normal math operators:

>>> root = objectify.fromstring(
... "<root><a>511<c>true</c><d>hoi</d></root>")
>>> root.a + root.b
16
>>> root.a += root.b
>>> print(root.a)
16

>>> root.a = 2
>>> print(root.a + 2)
4
>>> print(1 + root.a)
3

>>> print(root.c)
True
>>> root.c = False
>>> if not root.c:
... print("false!")
false!

>>> print(root.d + " test !")
hoi test !
>>> root.d = "%s - %s"
>>> print(root.d % (1234, 12345))
1234 - 12345

However, data elements continue to provide the objectify API. This means that sequence operations such as
len(), slicing and indexing (e.g. of strings) cannot behave as the Python types. Like all other tree elements, they
show the normal slicing behaviour of objectify elements:

>>> root = objectify.fromstring("<root><a>testtoast</root>")
>>> print(root.a + ’ me’) # behaves like a string, right?
test me
>>> len(root.a) # but there’s only one ’a’ element!
1
>>> [a.tag for a in root.a]
[’a’]
>>> print(root.a[0].tag)
a

>>> print(root.a)
test
>>> [str(a) for a in root.a[:1]]
[’test’]

If you need to run sequence operations on data types, you must ask the API for the real Python value. The string
value is always available through the normal ElementTree .text attribute. Additionally, all data classes provide
a .pyval attribute that returns the value as plain Python type:

127

Recursive tree dump Python data types

>>> root = objectify.fromstring("<root><a>test5</root>")
>>> root.a.text
’test’
>>> root.a.pyval
’test’

>>> root.b.text
’5’
>>> root.b.pyval
5

Note, however, that both attributes are read-only in objectify. If you want to change values, just assign them
directly to the attribute:

>>> root.a.text = "25"
Traceback (most recent call last):

...
TypeError: attribute ’text’ of ’StringElement’ objects is not writable

>>> root.a.pyval = 25
Traceback (most recent call last):

...
TypeError: attribute ’pyval’ of ’StringElement’ objects is not writable

>>> root.a = 25
>>> print(root.a)
25
>>> print(root.a.pyval)
25

In other words, objectify data elements behave like immutable Python types. You can replace them, but not
modify them.

Recursive tree dump

To see the data types that are currently used, you can call the module level dump() function that returns a
recursive string representation for elements:

>>> root = objectify.fromstring("""
... <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
... <a attr1="foo" attr2="bar">1
... <a>1.2
... 1
... true
... <c>what?</c>
... <d xsi:nil="true"/>
... </root>
... """)

>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

a = 1 [IntElement]

* attr1 = ’foo’

* attr2 = ’bar’
a = 1.2 [FloatElement]

128

Recursive string representation of elements Python data types

b = 1 [IntElement]
b = True [BoolElement]
c = ’what?’ [StringElement]
d = None [NoneElement]

* xsi:nil = ’true’

You can freely switch between different types for the same child:

>>> root = objectify.fromstring("<root><a>5</root>")
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

a = 5 [IntElement]

>>> root.a = ’nice string!’
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

a = ’nice string!’ [StringElement]

* py:pytype = ’str’

>>> root.a = True
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

a = True [BoolElement]

* py:pytype = ’bool’

>>> root.a = [1, 2, 3]
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

a = 1 [IntElement]

* py:pytype = ’int’
a = 2 [IntElement]

* py:pytype = ’int’
a = 3 [IntElement]

* py:pytype = ’int’

>>> root.a = (1, 2, 3)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

a = 1 [IntElement]

* py:pytype = ’int’
a = 2 [IntElement]

* py:pytype = ’int’
a = 3 [IntElement]

* py:pytype = ’int’

Recursive string representation of elements

Normally, elements use the standard string representation for str() that is provided by lxml.etree. You can enable
a pretty-print representation for objectify elements like this:

>>> objectify.enable_recursive_str()

>>> root = objectify.fromstring("""
... <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
... <a attr1="foo" attr2="bar">1

129

How data types are matched

... <a>1.2

... 1

... true

... <c>what?</c>

... <d xsi:nil="true"/>

... </root>

... """)

>>> print(str(root))
root = None [ObjectifiedElement]

a = 1 [IntElement]

* attr1 = ’foo’

* attr2 = ’bar’
a = 1.2 [FloatElement]
b = 1 [IntElement]
b = True [BoolElement]
c = ’what?’ [StringElement]
d = None [NoneElement]

* xsi:nil = ’true’

This behaviour can be switched off in the same way:

>>> objectify.enable_recursive_str(False)

How data types are matched

Objectify uses two different types of Elements. Structural Elements (or tree Elements) represent the object tree
structure. Data Elements represent the data containers at the leafs. You can explicitly create tree Elements with
the objectify.Element() factory and data Elements with the objectify.DataElement() factory.

When Element objects are created, lxml.objectify must determine which implementation class to use for them.
This is relatively easy for tree Elements and less so for data Elements. The algorithm is as follows:

1. If an element has children, use the default tree class.

2. If an element is defined as xsi:nil, use the NoneElement class.

3. If a “Python type hint” attribute is given, use this to determine the element class, see below.

4. If an XML Schema xsi:type hint is given, use this to determine the element class, see below.

5. Try to determine the element class from the text content type by trial and error.

6. If the element is a root node then use the default tree class.

7. Otherwise, use the default class for empty data classes.

You can change the default classes for tree Elements and empty data Elements at setup time. The ObjectifyElementClassLookup()
call accepts two keyword arguments, tree_class and empty_data_class, that determine the Element
classes used in these cases. By default, tree_class is a class called ObjectifiedElement and empty_data_class
is a StringElement.

130

Type annotations How data types are matched

Type annotations

The “type hint” mechanism deploys an XML attribute defined as lxml.objectify.PYTYPE_ATTRIBUTE.
It may contain any of the following string values: int, long, float, str, unicode, NoneType:

>>> print(objectify.PYTYPE_ATTRIBUTE)
{http://codespeak.net/lxml/objectify/pytype}pytype
>>> ns, name = objectify.PYTYPE_ATTRIBUTE[1:].split(’}’)

>>> root = objectify.fromstring("""\
... <root xmlns:py=’%s’>
... <a py:pytype=’str’>5
... <b py:pytype=’int’>5
... <c py:pytype=’NoneType’ />
... </root>
... """ % ns)

>>> print(root.a + 10)
510
>>> print(root.b + 10)
15
>>> print(root.c)
None

Note that you can change the name and namespace used for this attribute through the set_pytype_attribute_tag(tag)
module function, in case your application ever needs to. There is also a utility function annotate() that recur-
sively generates this attribute for the elements of a tree:

>>> root = objectify.fromstring("<root><a>test5</root>")
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

a = ’test’ [StringElement]
b = 5 [IntElement]

>>> objectify.annotate(root)

>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

a = ’test’ [StringElement]

* py:pytype = ’str’
b = 5 [IntElement]

* py:pytype = ’int’

XML Schema datatype annotation

A second way of specifying data type information uses XML Schema types as element annotations. Objectify
knows those that can be mapped to normal Python types:

>>> root = objectify.fromstring(’’’\
... <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... xmlns:xsd="http://www.w3.org/2001/XMLSchema">
... <d xsi:type="xsd:double">5</d>
... <i xsi:type="xsd:int" >5</i>
... <s xsi:type="xsd:string">5</s>
... </root>

131

XML Schema datatype annotation How data types are matched

... ’’’)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

d = 5.0 [FloatElement]

* xsi:type = ’xsd:double’
i = 5 [IntElement]

* xsi:type = ’xsd:int’
s = ’5’ [StringElement]

* xsi:type = ’xsd:string’

Again, there is a utility function xsiannotate() that recursively generates the “xsi:type” attribute for the
elements of a tree:

>>> root = objectify.fromstring(’’’\
... <root><a>test5<c>true</c></root>
... ’’’)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

a = ’test’ [StringElement]
b = 5 [IntElement]
c = True [BoolElement]

>>> objectify.xsiannotate(root)

>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

a = ’test’ [StringElement]

* xsi:type = ’xsd:string’
b = 5 [IntElement]

* xsi:type = ’xsd:integer’
c = True [BoolElement]

* xsi:type = ’xsd:boolean’

Note, however, that xsiannotate() will always use the first XML Schema datatype that is defined for any
given Python type, see also Defining additional data classes.

The utility function deannotate() can be used to get rid of ’py:pytype’ and/or ’xsi:type’ information:

>>> root = objectify.fromstring(’’’\
... <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... xmlns:xsd="http://www.w3.org/2001/XMLSchema">
... <d xsi:type="xsd:double">5</d>
... <i xsi:type="xsd:int" >5</i>
... <s xsi:type="xsd:string">5</s>
... </root>’’’)
>>> objectify.annotate(root)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

d = 5.0 [FloatElement]

* xsi:type = ’xsd:double’

* py:pytype = ’float’
i = 5 [IntElement]

* xsi:type = ’xsd:int’

* py:pytype = ’int’
s = ’5’ [StringElement]

* xsi:type = ’xsd:string’

* py:pytype = ’str’

132

The DataElement factory How data types are matched

>>> objectify.deannotate(root)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

d = 5 [IntElement]
i = 5 [IntElement]
s = 5 [IntElement]

You can control which type attributes should be de-annotated with the keyword arguments ’pytype’ (default: True)
and ’xsi’ (default: True). deannotate() can also remove ’xsi:nil’ attributes by setting ’xsi_nil=True’ (default:
False):

>>> root = objectify.fromstring(’’’\
... <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... xmlns:xsd="http://www.w3.org/2001/XMLSchema">
... <d xsi:type="xsd:double">5</d>
... <i xsi:type="xsd:int" >5</i>
... <s xsi:type="xsd:string">5</s>
... <n xsi:nil="true"/>
... </root>’’’)
>>> objectify.annotate(root)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

d = 5.0 [FloatElement]

* xsi:type = ’xsd:double’

* py:pytype = ’float’
i = 5 [IntElement]

* xsi:type = ’xsd:int’

* py:pytype = ’int’
s = ’5’ [StringElement]

* xsi:type = ’xsd:string’

* py:pytype = ’str’
n = None [NoneElement]

* xsi:nil = ’true’

* py:pytype = ’NoneType’
>>> objectify.deannotate(root, xsi_nil=True)
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

d = 5 [IntElement]
i = 5 [IntElement]
s = 5 [IntElement]
n = u’’ [StringElement]

Note that deannotate() does not remove the namespace declarations of the pytype namespace by default.
To remove them as well, and to generally clean up the namespace declarations in the document (usually when
done with the whole processing), pass the option cleanup_namespaces=True. This option is new in lxml
2.3.2. In older versions, use the function lxml.etree.cleanup_namespaces() instead.

The DataElement factory

For convenience, the DataElement() factory creates an Element with a Python value in one step. You can pass
the required Python type name or the XSI type name:

>>> root = objectify.Element("root")
>>> root.x = objectify.DataElement(5, _pytype="int")
>>> print(objectify.dump(root))

133

The DataElement factory How data types are matched

root = None [ObjectifiedElement]
x = 5 [IntElement]

* py:pytype = ’int’

>>> root.x = objectify.DataElement(5, _pytype="str", myattr="someval")
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

x = ’5’ [StringElement]

* myattr = ’someval’

* py:pytype = ’str’

>>> root.x = objectify.DataElement(5, _xsi="integer")
>>> print(objectify.dump(root))
root = None [ObjectifiedElement]

x = 5 [IntElement]

* py:pytype = ’int’

* xsi:type = ’xsd:integer’

XML Schema types reside in the XML schema namespace thus DataElement() tries to correctly prefix the
xsi:type attribute value for you:

>>> root = objectify.Element("root")
>>> root.s = objectify.DataElement(5, _xsi="string")

>>> objectify.deannotate(root, xsi=False)
>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:py="http://codespeak.net/lxml/objectify/pytype" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<s xsi:type="xsd:string">5</s>
</root>

DataElement() uses a default nsmap to set these prefixes:

>>> el = objectify.DataElement(’5’, _xsi=’string’)
>>> namespaces = list(el.nsmap.items())
>>> namespaces.sort()
>>> for prefix, namespace in namespaces:
... print("%s - %s" % (prefix, namespace))
py - http://codespeak.net/lxml/objectify/pytype
xsd - http://www.w3.org/2001/XMLSchema
xsi - http://www.w3.org/2001/XMLSchema-instance

>>> print(el.get("{http://www.w3.org/2001/XMLSchema-instance}type"))
xsd:string

While you can set custom namespace prefixes, it is necessary to provide valid namespace information if you
choose to do so:

>>> el = objectify.DataElement(’5’, _xsi=’foo:string’,
... nsmap={’foo’: ’http://www.w3.org/2001/XMLSchema’})
>>> namespaces = list(el.nsmap.items())
>>> namespaces.sort()
>>> for prefix, namespace in namespaces:
... print("%s - %s" % (prefix, namespace))
foo - http://www.w3.org/2001/XMLSchema
py - http://codespeak.net/lxml/objectify/pytype
xsi - http://www.w3.org/2001/XMLSchema-instance

134

Defining additional data classes How data types are matched

>>> print(el.get("{http://www.w3.org/2001/XMLSchema-instance}type"))
foo:string

Note how lxml chose a default prefix for the XML Schema Instance namespace. We can override it as in the
following example:

>>> el = objectify.DataElement(’5’, _xsi=’foo:string’,
... nsmap={’foo’: ’http://www.w3.org/2001/XMLSchema’,
... ’myxsi’: ’http://www.w3.org/2001/XMLSchema-instance’})
>>> namespaces = list(el.nsmap.items())
>>> namespaces.sort()
>>> for prefix, namespace in namespaces:
... print("%s - %s" % (prefix, namespace))
foo - http://www.w3.org/2001/XMLSchema
myxsi - http://www.w3.org/2001/XMLSchema-instance
py - http://codespeak.net/lxml/objectify/pytype

>>> print(el.get("{http://www.w3.org/2001/XMLSchema-instance}type"))
foo:string

Care must be taken if different namespace prefixes have been used for the same namespace. Namespace informa-
tion gets merged to avoid duplicate definitions when adding a new sub-element to a tree, but this mechanism does
not adapt the prefixes of attribute values:

>>> root = objectify.fromstring("""<root xmlns:schema="http://www.w3.org/2001/XMLSchema"/>""")
>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:schema="http://www.w3.org/2001/XMLSchema"/>

>>> s = objectify.DataElement("17", _xsi="string")
>>> print(etree.tostring(s, pretty_print=True))
<value xmlns:py="http://codespeak.net/lxml/objectify/pytype" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" py:pytype="str" xsi:type="xsd:string">17</value>

>>> root.s = s
>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:schema="http://www.w3.org/2001/XMLSchema">

<s xmlns:py="http://codespeak.net/lxml/objectify/pytype" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" py:pytype="str" xsi:type="xsd:string">17</s>
</root>

It is your responsibility to fix the prefixes of attribute values if you choose to deviate from the standard prefixes.
A convenient way to do this for xsi:type attributes is to use the xsiannotate() utility:

>>> objectify.xsiannotate(root)
>>> print(etree.tostring(root, pretty_print=True))
<root xmlns:schema="http://www.w3.org/2001/XMLSchema">

<s xmlns:py="http://codespeak.net/lxml/objectify/pytype" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" py:pytype="str" xsi:type="schema:string">17</s>
</root>

Of course, it is discouraged to use different prefixes for one and the same namespace when building up an objectify
tree.

Defining additional data classes

You can plug additional data classes into objectify that will be used in exactly the same way as the predefined
types. Data classes can either inherit from ObjectifiedDataElement directly or from one of the specialised
classes like NumberElement or BoolElement. The numeric types require an initial call to the NumberEle-
ment method self._setValueParser(function) to set their type conversion function (string -> numeric

135

Defining additional data classes How data types are matched

Python type). This call should be placed into the element _init() method.

The registration of data classes uses the PyType class:

>>> class ChristmasDate(objectify.ObjectifiedDataElement):
... def call_santa(self):
... print("Ho ho ho!")

>>> def checkChristmasDate(date_string):
... if not date_string.startswith(’24.12.’):
... raise ValueError # or TypeError

>>> xmas_type = objectify.PyType(’date’, checkChristmasDate, ChristmasDate)

The PyType constructor takes a string type name, an (optional) callable type check and the custom data class. If
a type check is provided it must accept a string as argument and raise ValueError or TypeError if it cannot handle
the string value.

PyTypes are used if an element carries a py:pytype attribute denoting its data type or, in absence of such an
attribute, if the given type check callable does not raise a ValueError/TypeError exception when applied to the
element text.

If you want, you can also register this type under an XML Schema type name:

>>> xmas_type.xmlSchemaTypes = ("date",)

XML Schema types will be considered if the element has an xsi:type attribute that specifies its data type. The
line above binds the XSD type date to the newly defined Python type. Note that this must be done before the
next step, which is to register the type. Then you can use it:

>>> xmas_type.register()

>>> root = objectify.fromstring(
... "<root><a>24.12.200012.24.2000</root>")
>>> root.a.call_santa()
Ho ho ho!
>>> root.b.call_santa()
Traceback (most recent call last):

...
AttributeError: no such child: call_santa

If you need to specify dependencies between the type check functions, you can pass a sequence of type names
through the before and after keyword arguments of the register() method. The PyType will then try
to register itself before or after the respective types, as long as they are currently registered. Note that this only
impacts the currently registered types at the time of registration. Types that are registered later on will not care
about the dependencies of already registered types.

If you provide XML Schema type information, this will override the type check function defined above:

>>> root = objectify.fromstring(’’’\
... <root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
... <a xsi:type="date">12.24.2000
... </root>
... ’’’)
>>> print(root.a)
12.24.2000
>>> root.a.call_santa()
Ho ho ho!

136

Advanced element class lookup What is different from lxml.etree?

To unregister a type, call its unregister() method:

>>> root.a.call_santa()
Ho ho ho!
>>> xmas_type.unregister()
>>> root.a.call_santa()
Traceback (most recent call last):

...
AttributeError: no such child: call_santa

Be aware, though, that this does not immediately apply to elements to which there already is a Python reference.
Their Python class will only be changed after all references are gone and the Python object is garbage collected.

Advanced element class lookup

In some cases, the normal data class setup is not enough. Being based on lxml.etree, however, lxml.objectify
supports very fine-grained control over the Element classes used in a tree. All you have to do is configure a differ-
ent class lookup mechanism (or write one yourself).

The first step for the setup is to create a new parser that builds objectify documents. The objectify API is meant for
data-centric XML (as opposed to document XML with mixed content). Therefore, we configure the parser to let
it remove whitespace-only text from the parsed document if it is not enclosed by an XML element. Note that this
alters the document infoset, so if you consider the removed spaces as data in your specific use case, you should
go with a normal parser and just set the element class lookup. Most applications, however, will work fine with the
following setup:

>>> parser = objectify.makeparser(remove_blank_text=True)

What this does internally, is:

>>> parser = etree.XMLParser(remove_blank_text=True)

>>> lookup = objectify.ObjectifyElementClassLookup()
>>> parser.set_element_class_lookup(lookup)

If you want to change the lookup scheme, say, to get additional support for namespace specific classes, you can
register the objectify lookup as a fallback of the namespace lookup. In this case, however, you have to take
care that the namespace classes inherit from objectify.ObjectifiedElement, not only from the normal
lxml.etree.ElementBase, so that they support the objectify API. The above setup code then becomes:

>>> lookup = etree.ElementNamespaceClassLookup(
... objectify.ObjectifyElementClassLookup())
>>> parser.set_element_class_lookup(lookup)

See the documentation on class lookup schemes for more information.

What is different from lxml.etree?

Such a different Element API obviously implies some side effects to the normal behaviour of the rest of the API.

∙ len(<element>) returns the sibling count, not the number of children of <element>. You can retrieve the
number of children with the countchildren() method.

∙ Iteration over elements does not yield the children, but the siblings. You can access all children with the
iterchildren() method on elements or retrieve a list by calling the getchildren() method.

137

What is different from lxml.etree?

∙ The find, findall and findtext methods require a different implementation based on ETXPath. In lxml.etree,
they use a Python implementation based on the original iteration scheme. This has the disadvantage that
they may not be 100% backwards compatible, and the additional advantage that they now support any XPath
expression.

138

Chapter 13

lxml.html

Author: Ian Bicking

Since version 2.0, lxml comes with a dedicated Python package for dealing with HTML: lxml.html. It is based
on lxml’s HTML parser, but provides a special Element API for HTML elements, as well as a number of utilities
for common HTML processing tasks.

The main API is based on the lxml.etree API, and thus, on the ElementTree API.

Parsing HTML

Parsing HTML fragments

There are several functions available to parse HTML:

parse(filename_url_or_file): Parses the named file or url, or if the object has a .read() method,
parses from that.

If you give a URL, or if the object has a .geturl()method (as file-like objects from urllib.urlopen()
have), then that URL is used as the base URL. You can also provide an explicit base_url keyword argu-
ment.

document_fromstring(string): Parses a document from the given string. This always creates a correct
HTML document, which means the parent node is <html>, and there is a body and possibly a head.

fragment_fromstring(string, create_parent=False): Returns an HTML fragment from a string.
The fragment must contain just a single element, unless create_parent is given; e.g,. fragment_fromstring(string,
create_parent=’div’) will wrap the element in a <div>.

fragments_fromstring(string): Returns a list of the elements found in the fragment.

fromstring(string): Returns document_fromstring or fragment_fromstring, based on whether
the string looks like a full document, or just a fragment.

Really broken pages

The normal HTML parser is capable of handling broken HTML, but for pages that are far enough from HTML to
call them ’tag soup’, it may still fail to parse the page in a useful way. A way to deal with this is ElementSoup,

139

http://effbot.org/zone/element-index.htm

Running HTML doctests

which deploys the well-known BeautifulSoup parser to build an lxml HTML tree.

However, note that the most common problem with web pages is the lack of (or the existence of incorrect) en-
coding declarations. It is therefore often sufficient to only use the encoding detection of BeautifulSoup, called
UnicodeDammit, and to leave the rest to lxml’s own HTML parser, which is several times faster.

HTML Element Methods

HTML elements have all the methods that come with ElementTree, but also include some extra methods:

.drop_tree(): Drops the element and all its children. Unlike el.getparent().remove(el) this does
not remove the tail text; with drop_tree the tail text is merged with the previous element.

.drop_tag(): Drops the tag, but keeps its children and text.

.find_class(class_name): Returns a list of all the elements with the given CSS class name. Note that
class names are space separated in HTML, so doc.find_class_name(’highlight’) will find an
element like <div class="sidebar highlight">. Class names are case sensitive.

.find_rel_links(rel): Returns a list of all the elements. E.g., doc.find_rel_links(’tag’)
returns all the links marked as tags.

.get_element_by_id(id, default=None): Return the element with the given id, or the default if
none is found. If there are multiple elements with the same id (which there shouldn’t be, but there often is),
this returns only the first.

.text_content(): Returns the text content of the element, including the text content of its children, with no
markup.

.cssselect(expr): Select elements from this element and its children, using a CSS selector expression.
(Note that .xpath(expr) is also available as on all lxml elements.)

.label: Returns the corresponding <label> element for this element, if any exists (None if there is none).
Label elements have a label.for_element attribute that points back to the element.

.base_url: The base URL for this element, if one was saved from the parsing. This attribute is not settable. Is
None when no base URL was saved.

Running HTML doctests

One of the interesting modules in the lxml.html package deals with doctests. It can be hard to compare two
HTML pages for equality, as whitespace differences aren’t meaningful and the structural formatting can differ.
This is even more a problem in doctests, where output is tested for equality and small differences in whitespace or
the order of attributes can let a test fail. And given the verbosity of tag-based languages, it may take more than a
quick look to find the actual differences in the doctest output.

Luckily, lxml provides the lxml.doctestcompare module that supports relaxed comparison of XML and
HTML pages and provides a readable diff in the output when a test fails. The HTML comparison is most easily
used by importing the usedoctest module in a doctest:

>>> import lxml.html.usedoctest

Now, if you have a HTML document and want to compare it to an expected result document in a doctest, you can
do the following:

140

http://www.crummy.com/software/BeautifulSoup/
http://microformats.org/wiki/rel-tag

Creating HTML with the E-factory

>>> import lxml.html
>>> html = lxml.html.fromstring(’’’\
... <html><body onload="" color="white">
... <p>Hi !</p>
... </body></html>
... ’’’)

>>> print lxml.html.tostring(html)
<html><body onload="" color="white"><p>Hi !</p></body></html>

>>> print lxml.html.tostring(html)
<html> <body color="white" onload=""> <p>Hi !</p> </body> </html>

>>> print lxml.html.tostring(html)
<html>

<body color="white" onload="">
<p>Hi !</p>

</body>
</html>

In documentation, you would likely prefer the pretty printed HTML output, as it is the most readable. However,
the three documents are equivalent from the point of view of an HTML tool, so the doctest will silently accept any
of the above. This allows you to concentrate on readability in your doctests, even if the real output is a straight
ugly HTML one-liner.

Note that there is also an lxml.usedoctest module which you can import for XML comparisons. The HTML
parser notably ignores namespaces and some other XMLisms.

Creating HTML with the E-factory

lxml.html comes with a predefined HTML vocabulary for the E-factory, originally written by Fredrik Lundh. This
allows you to quickly generate HTML pages and fragments:

>>> from lxml.html import builder as E
>>> from lxml.html import usedoctest
>>> html = E.HTML(
... E.HEAD(
... E.LINK(rel="stylesheet", href="great.css", type="text/css"),
... E.TITLE("Best Page Ever")
...),
... E.BODY(
... E.H1(E.CLASS("heading"), "Top News"),
... E.P("World News only on this page", style="font-size: 200%"),
... "Ah, and here’s some more text, by the way.",
... lxml.html.fromstring("<p>... and this is a parsed fragment ...</p>")
...)
...)

>>> print lxml.html.tostring(html)
<html>

<head>
<link href="great.css" rel="stylesheet" type="text/css">
<title>Best Page Ever</title>

</head>

141

http://online.effbot.org/2006_11_01_archive.htm#et-builder

Viewing your HTML Working with links

<body>
<h1 class="heading">Top News</h1>
<p style="font-size: 200%">World News only on this page</p>
Ah, and here’s some more text, by the way.
<p>... and this is a parsed fragment ...</p>

</body>
</html>

Note that you should use lxml.html.tostring and not lxml.tostring. lxml.tostring(doc) will
return the XML representation of the document, which is not valid HTML. In particular, things like <script
src="..."></script>will be serialized as <script src="..." />, which completely confuses browsers.

Viewing your HTML

A handy method for viewing your HTML: lxml.html.open_in_browser(lxml_doc) will write the
document to disk and open it in a browser (with the webbrowser module).

Working with links

There are several methods on elements that allow you to see and modify the links in a document.

.iterlinks(): This yields (element, attribute, link, pos) for every link in the document.
attributemay be None if the link is in the text (as will be the case with a <style> tag with @import).

This finds any link in an action, archive, background, cite, classid, codebase, data,
href, longdesc, profile, src, usemap, dynsrc, or lowsrc attribute. It also searches style
attributes for url(link), and <style> tags for @import and url().

This function does not pay attention to <base href>.

.resolve_base_href(): This function will modify the document in-place to take account of <base href>
if the document contains that tag. In the process it will also remove that tag from the document.

.make_links_absolute(base_href, resolve_base_href=True): This makes all links in the
document absolute, assuming that base_href is the URL of the document. So if you pass base_href="http://localhost/foo/bar.html"
and there is a link to baz.html that will be rewritten as http://localhost/foo/baz.html.

If resolve_base_href is true, then any <base href> tag will be taken into account (just calling
self.resolve_base_href()).

.rewrite_links(link_repl_func, resolve_base_href=True, base_href=None): This rewrites
all the links in the document using your given link replacement function. If you give a base_href value,
all links will be passed in after they are joined with this URL.

For each link link_repl_func(link) is called. That function then returns the new link, or None
to remove the attribute or tag that contains the link. Note that all links will be passed in, including
links like "#anchor" (which is purely internal), and things like "mailto:bob@example.com" (or
javascript:...).

If you want access to the context of the link, you should use .iterlinks() instead.

Functions

In addition to these methods, there are corresponding functions:

142

http://python.org/doc/current/lib/module-webbrowser.html

Forms

∙ iterlinks(html)

∙ make_links_absolute(html, base_href, ...)

∙ rewrite_links(html, link_repl_func, ...)

∙ resolve_base_href(html)

These functions will parse html if it is a string, then return the new HTML as a string. If you pass in a document,
the document will be copied (except for iterlinks()), the method performed, and the new document returned.

Forms

Any <form> elements in a document are available through the list doc.forms (e.g., doc.forms[0]). Form,
input, select, and textarea elements each have special methods.

Input elements (including <select> and <textarea>) have these attributes:

.name: The name of the element.

.value: The value of an input, the content of a textarea, the selected option(s) of a select. This attribute can be
set.

In the case of a select that takes multiple options (<select multiple>) this will be a set of the selected
options; you can add or remove items to select and unselect the options.

Select attributes:

.value_options: For select elements, this is all the possible values (the values of all the options).

.multiple: For select elements, true if this is a <select multiple> element.

Input attributes:

.type: The type attribute in <input> elements.

.checkable: True if this can be checked (i.e., true for type=radio and type=checkbox).

.checked: If this element is checkable, the checked state. Raises AttributeError on non-checkable inputs.

The form itself has these attributes:

.inputs: A dictionary-like object that can be used to access input elements by name. When there are multiple
input elements with the same name, this returns list-like structures that can also be used to access the options
and their values as a group.

.fields: A dictionary-like object used to access values by their name. form.inputs returns elements, this
only returns values. Setting values in this dictionary will effect the form inputs. Basically form.fields[x]
is equivalent to form.inputs[x].value and form.fields[x] = y is equivalent to form.inputs[x].value
= y. (Note that sometimes form.inputs[x] returns a compound object, but these objects also have
.value attributes.)

If you set this attribute, it is equivalent to form.fields.clear(); form.fields.update(new_value)

.form_values(): Returns a list of [(name, value), ...], suitable to be passed to urllib.urlencode()
for form submission.

.action: The action attribute. This is resolved to an absolute URL if possible.

.method: The method attribute, which defaults to GET.

143

Form Filling Example Forms

Form Filling Example

Note that you can change any of these attributes (values, method, action, etc) and then serialize the form to see the
updated values. You can, for instance, do:

>>> from lxml.html import fromstring, tostring
>>> form_page = fromstring(’’’<html><body><form>
... Your name: <input type="text" name="name">

... Your phone: <input type="text" name="phone">

... Your favorite pets:

... Dogs: <input type="checkbox" name="interest" value="dogs">

... Cats: <input type="checkbox" name="interest" value="cats">

... Llamas: <input type="checkbox" name="interest" value="llamas">

... <input type="submit"></form></body></html>’’’)
>>> form = form_page.forms[0]
>>> form.fields = dict(
... name=’John Smith’,
... phone=’555-555-3949’,
... interest=set([’cats’, ’llamas’]))
>>> print tostring(form)
<html>

<body>
<form>
Your name:

<input name="name" type="text" value="John Smith">

Your phone:
<input name="phone" type="text" value="555-555-3949">

Your favorite pets:

Dogs:
<input name="interest" type="checkbox" value="dogs">

Cats:
<input checked name="interest" type="checkbox" value="cats">

Llamas:
<input checked name="interest" type="checkbox" value="llamas">

<input type="submit">

</form>
</body>

</html>

Form Submission

You can submit a form with lxml.html.submit_form(form_element). This will return a file-like object
(the result of urllib.urlopen()).

If you have extra input values you want to pass you can use the keyword argument extra_values, like
extra_values={’submit’: ’Yes!’}. This is the only way to get submit values into the form, as there
is no state of “submitted” for these elements.

You can pass in an alternate opener with the open_http keyword argument, which is a function with the signa-
ture open_http(method, url, values).

Example:

>>> from lxml.html import parse, submit_form

144

Cleaning up HTML

>>> page = parse(’http://tinyurl.com’).getroot()
>>> page.forms[1].fields[’url’] = ’http://lxml.de/’
>>> result = parse(submit_form(page.forms[1])).getroot()
>>> [a.attrib[’href’] for a in result.xpath("//a[@target=’_blank’]")]
[’http://tinyurl.com/2xae8s’, ’http://preview.tinyurl.com/2xae8s’]

Cleaning up HTML

The module lxml.html.clean provides a Cleaner class for cleaning up HTML pages. It supports removing
embedded or script content, special tags, CSS style annotations and much more.

Say, you have an evil web page from an untrusted source that contains lots of content that upsets browsers and
tries to run evil code on the client side:

>>> html = ’’’\
... <html>
... <head>
... <script type="text/javascript" src="evil-site"></script>
... <link rel="alternate" type="text/rss" src="evil-rss">
... <style>
... body {background-image: url(javascript:do_evil)};
... div {color: expression(evil)};
... </style>
... </head>
... <body onload="evil_function()">
... <!-- I am interpreted for EVIL! -->
... a link
... another link
... <p onclick="evil_function()">a paragraph</p>
... <div style="display: none">secret EVIL!</div>
... <object> of EVIL! </object>
... <iframe src="evil-site"></iframe>
... <form action="evil-site">
... Password: <input type="password" name="password">
... </form>
... <blink>annoying EVIL!</blink>
... spam spam SPAM!
... <image src="evil!">
... </body>
... </html>’’’

To remove the all suspicious content from this unparsed document, use the clean_html function:

>>> from lxml.html.clean import clean_html
>>> print clean_html(html)
<div><style>/* deleted */</style><body>

a link
another link
<p>a paragraph</p>
<div>secret EVIL!</div>
of EVIL!

Password:

145

Cleaning up HTML

annoying EVIL!spam spam SPAM!
</body></div>

The Cleaner class supports several keyword arguments to control exactly which content is removed:

>>> from lxml.html.clean import Cleaner

>>> cleaner = Cleaner(page_structure=False, links=False)
>>> print cleaner.clean_html(html)
<html>

<head>
<link rel="alternate" src="evil-rss" type="text/rss">
<style>/* deleted */</style>

</head>
<body>

a link
another link
<p>a paragraph</p>
<div>secret EVIL!</div>
of EVIL!
Password:
annoying EVIL!
spam spam SPAM!

</body>
</html>

>>> cleaner = Cleaner(style=True, links=True, add_nofollow=True,
... page_structure=False, safe_attrs_only=False)

>>> print cleaner.clean_html(html)
<html>

<head>
</head>
<body>

a link
another link
<p>a paragraph</p>
<div>secret EVIL!</div>
of EVIL!
Password:
annoying EVIL!
spam spam SPAM!

</body>
</html>

You can also whitelist some otherwise dangerous content with Cleaner(host_whitelist=[’www.youtube.com’]),
which would allow embedded media from YouTube, while still filtering out embedded media from other sites.

See the docstring of Cleaner for the details of what can be cleaned.

146

autolink HTML Diff

autolink

In addition to cleaning up malicious HTML, lxml.html.clean contains functions to do other things to your
HTML. This includes autolinking:

autolink(doc, ...)

autolink_html(html, ...)

This finds anything that looks like a link (e.g., http://example.com) in the text of an HTML document, and
turns it into an anchor. It avoids making bad links.

Links in the elements <textarea>, <pre>, <code>, anything in the head of the document. You can pass in a
list of elements to avoid in avoid_elements=[’textarea’, ...].

Links to some hosts can be avoided. By default links to localhost*, example.* and 127.0.0.1 are not
autolinked. Pass in avoid_hosts=[list_of_regexes] to control this.

Elements with the nolink CSS class are not autolinked. Pass in avoid_classes=[’code’, ...] to
control this.

The autolink_html() version of the function parses the HTML string first, and returns a string.

wordwrap

You can also wrap long words in your html:

word_break(doc, max_width=40, ...)

word_break_html(html, ...)

This finds any long words in the text of the document and inserts ​ in the document (which is the Unicode
zero-width space).

This avoids the elements <pre>, <textarea>, and <code>. You can control this with avoid_elements=[’textarea’,
...].

It also avoids elements with the CSS class nobreak. You can control this with avoid_classes=[’code’,
...].

Lastly you can control the character that is inserted with break_character=u’\u200b’. However, you
cannot insert markup, only text.

word_break_html(html) parses the HTML document and returns a string.

HTML Diff

The module lxml.html.diff offers some ways to visualize differences in HTML documents. These differ-
ences are content oriented. That is, changes in markup are largely ignored; only changes in the content itself are
highlighted.

There are two ways to view differences: htmldiff and html_annotate. One shows differences with <ins>
and , while the other annotates a set of changes similar to svn blame. Both these functions operate on
text, and work best with content fragments (only what goes in <body>), not complete documents.

Example of htmldiff:

147

Examples

>>> from lxml.html.diff import htmldiff, html_annotate
>>> doc1 = ’’’<p>Here is some text.</p>’’’
>>> doc2 = ’’’<p>Here is a lot of <i>text</i>.</p>’’’
>>> doc3 = ’’’<p>Here is a little <i>text</i>.</p>’’’
>>> print htmldiff(doc1, doc2)
<p>Here is <ins>a lot of <i>text</i>.</ins> some text. </p>
>>> print html_annotate([(doc1, ’author1’), (doc2, ’author2’),
... (doc3, ’author3’)])
<p>Here is

a
little
<i>text</i>
.</p>

As you can see, it is imperfect as such things tend to be. On larger tracts of text with larger edits it will generally
do better.

The html_annotate function can also take an optional second argument, markup. This is a function like
markup(text, version) that returns the given text marked up with the given version. The default version,
the output of which you see in the example, looks like:

def default_markup(text, version):
return ’%s’ % (

cgi.escape(unicode(version), 1), text)

Examples

Microformat Example

This example parses the hCard microformat.

First we get the page:

>>> import urllib
>>> from lxml.html import fromstring
>>> url = ’http://microformats.org/’
>>> content = urllib.urlopen(url).read()
>>> doc = fromstring(content)
>>> doc.make_links_absolute(url)

Then we create some objects to put the information in:

>>> class Card(object):
... def __init__(self, **kw):
... for name, value in kw:
... setattr(self, name, value)
>>> class Phone(object):
... def __init__(self, phone, types=()):
... self.phone, self.types = phone, types

And some generally handy functions for microformats:

>>> def get_text(el, class_name):
... els = el.find_class(class_name)
... if els:
... return els[0].text_content()

148

http://microformats.org/wiki/hcard

Microformat Example Examples

... else:

... return ’’
>>> def get_value(el):
... return get_text(el, ’value’) or el.text_content()
>>> def get_all_texts(el, class_name):
... return [e.text_content() for e in els.find_class(class_name)]
>>> def parse_addresses(el):
... # Ideally this would parse street, etc.
... return el.find_class(’adr’)

Then the parsing:

>>> for el in doc.find_class(’hcard’):
... card = Card()
... card.el = el
... card.fn = get_text(el, ’fn’)
... card.tels = []
... for tel_el in card.find_class(’tel’):
... card.tels.append(Phone(get_value(tel_el),
... get_all_texts(tel_el, ’type’)))
... card.addresses = parse_addresses(el)

149

Chapter 14

lxml.cssselect

lxml supports a number of interesting languages for tree traversal and element selection. The most important is
obviously XPath, but there is also ObjectPath in the lxml.objectify module. The newest child of this family is CSS
selection, which is made available in form of the lxml.cssselect module.

Although it started its life in lxml, cssselect is now an independent project. It translates CSS selectors to XPath
1.0 expressions that can be used with lxml’s XPath engine. lxml.cssselect adds a few convenience shortcuts
into that package.

The CSSSelector class

The most important class in the lxml.cssselect module is CSSSelector. It provides the same interface
as the XPath class, but accepts a CSS selector expression as input:

>>> from lxml.cssselect import CSSSelector
>>> sel = CSSSelector(’div.content’)
>>> sel #doctest: +ELLIPSIS
<CSSSelector ... for ’div.content’>
>>> sel.css
’div.content’

The selector actually compiles to XPath, and you can see the expression by inspecting the object:

>>> sel.path
"descendant-or-self::div[@class and contains(concat(’ ’, normalize-space(@class), ’ ’), ’ content ’)]"

To use the selector, simply call it with a document or element object:

>>> from lxml.etree import fromstring
>>> h = fromstring(’’’<div id="outer">
... <div id="inner" class="content body">
... text
... </div></div>’’’)
>>> [e.get(’id’) for e in sel(h)]
[’inner’]

Using CSSSelector is equivalent to translating with cssselect and using the XPath class:

>>> from cssselect import GenericTranslator
>>> from lxml.etree import XPath

150

http://www.w3.org/TR/CSS21/selector.html
http://www.w3.org/TR/CSS21/selector.html
http://packages.python.org/cssselect/

Namespaces

>>> sel = XPath(GenericTranslator().css_to_xpath(’div.content’))

CSSSelector takes a translator parameter to let you choose which translator to use. It can be ’xml’ (the
default), ’xhtml’, ’html’ or a Translator object.

The cssselect method

lxml Element objects have a cssselect convenience method.

>>> h.cssselect(’div.content’) == sel(h)
True

Note however that pre-compiling the expression with the CSSSelector or XPath class can provide a substan-
tial speedup.

The method also accepts a translator parameter. On HtmlElement objects, the default is changed to
’html’.

Supported Selectors

Most Level 3 selectors are supported. The details are in the cssselect documentation.

Namespaces

In CSS you can use namespace-prefix|element, similar to namespace-prefix:element in an
XPath expression. In fact, it maps one-to-one, and the same rules are used to map namespace prefixes to names-
pace URIs: the CSSSelector class accepts a dictionary as its namespaces argument.

151

http://packages.python.org/cssselect/#cssselect.GenericTranslator
http://www.w3.org/TR/2011/REC-css3-selectors-20110929/
http://packages.python.org/cssselect/#supported-selectors

Chapter 15

BeautifulSoup Parser

BeautifulSoup is a Python package that parses broken HTML, just like lxml supports it based on the parser of
libxml2. BeautifulSoup uses a different parsing approach. It is not a real HTML parser but uses regular expressions
to dive through tag soup. It is therefore more forgiving in some cases and less good in others. It is not uncommon
that lxml/libxml2 parses and fixes broken HTML better, but BeautifulSoup has superiour support for encoding
detection. It very much depends on the input which parser works better.

To prevent users from having to choose their parser library in advance, lxml can interface to the parsing capa-
bilities of BeautifulSoup through the lxml.html.soupparser module. It provides three main functions:
fromstring() and parse() to parse a string or file using BeautifulSoup into an lxml.html document,
and convert_tree() to convert an existing BeautifulSoup tree into a list of top-level Elements.

Parsing with the soupparser

The functions fromstring() and parse() behave as known from ElementTree. The first returns a root
Element, the latter returns an ElementTree.

There is also a legacy module called lxml.html.ElementSoup, which mimics the interface provided by
ElementTree’s own ElementSoup module. Note that the soupparser module was added in lxml 2.0.3. Previous
versions of lxml 2.0.x only have the ElementSoup module.

Here is a document full of tag soup, similar to, but not quite like, HTML:

>>> tag_soup = ’<meta><head><title>Hello</head><body onload=crash()>Hi all<p>’

all you need to do is pass it to the fromstring() function:

>>> from lxml.html.soupparser import fromstring
>>> root = fromstring(tag_soup)

To see what we have here, you can serialise it:

>>> from lxml.etree import tostring
>>> print(tostring(root, pretty_print=True).strip())
<html>

<meta/>
<head>

<title>Hello</title>
</head>
<body onload="crash()">Hi all<p/></body>

152

http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/documentation.html#Beautiful%20Soup%20Gives%20You%20Unicode%2C%20Dammit
http://www.crummy.com/software/BeautifulSoup/documentation.html#Beautiful%20Soup%20Gives%20You%20Unicode%2C%20Dammit
http://effbot.org/zone/element-soup.htm

Entity handling

</html>

Not quite what you’d expect from an HTML page, but, well, it was broken already, right? BeautifulSoup did its
best, and so now it’s a tree.

To control which Element implementation is used, you can pass a makeelement factory function to parse()
and fromstring(). By default, this is based on the HTML parser defined in lxml.html.

For a quick comparison, libxml2 2.6.32 parses the same tag soup as follows. The main difference is that libxml2
tries harder to adhere to the structure of an HTML document and moves misplaced tags where they (likely) belong.
Note, however, that the result can vary between parser versions.

<html>
<head>

<meta/>
<title>Hello</title>

</head>
<body>

<p>Hi all</p>
<p/>

</body>
</html>

Entity handling

By default, the BeautifulSoup parser also replaces the entities it finds by their character equivalent.

>>> tag_soup = ’<body>©€-õƽ<p>’
>>> body = fromstring(tag_soup).find(’.//body’)
>>> body.text
u’\xa9\u20ac-\xf5\u01bd’

If you want them back on the way out, you can just serialise with the default encoding, which is ’US-ASCII’.

>>> tostring(body)
’<body>©€-õƽ<p/></body>’

>>> tostring(body, method="html")
’<body>©€-õƽ<p></p></body>’

Any other encoding will output the respective byte sequences.

>>> tostring(body, encoding="utf-8")
’<body>\xc2\xa9\xe2\x82\xac-\xc3\xb5\xc6\xbd<p/></body>’

>>> tostring(body, method="html", encoding="utf-8")
’<body>\xc2\xa9\xe2\x82\xac-\xc3\xb5\xc6\xbd<p></p></body>’

>>> tostring(body, encoding=’unicode’)
u’<body>\xa9\u20ac-\xf5\u01bd<p/></body>’

>>> tostring(body, method="html", encoding=’unicode’)
u’<body>\xa9\u20ac-\xf5\u01bd<p></p></body>’

153

Using only the encoding detection

Using soupparser as a fallback

The downside of using this parser is that it is much slower than the HTML parser of lxml. So if performance
matters, you might want to consider using soupparser only as a fallback for certain cases.

One common problem of lxml’s parser is that it might not get the encoding right in cases where the document
contains a <meta> tag at the wrong place. In this case, you can exploit the fact that lxml serialises much faster
than most other HTML libraries for Python. Just serialise the document to unicode and if that gives you an
exception, re-parse it with BeautifulSoup to see if that works better.

>>> tag_soup = ’’’\
... <meta http-equiv="Content-Type"
... content="text/html;charset=utf-8" />
... <html>
... <head>
... <title>Hello W\xc3\xb6rld!</title>
... </head>
... <body>Hi all</body>
... </html>’’’

>>> import lxml.html
>>> import lxml.html.soupparser

>>> root = lxml.html.fromstring(tag_soup)
>>> try:
... ignore = tostring(root, encoding=’unicode’)
... except UnicodeDecodeError:
... root = lxml.html.soupparser.fromstring(tag_soup)

Using only the encoding detection

If you prefer a ’real’ (and fast) HTML parser instead of the regular expression based one in BeautifulSoup, you
can still benefit from BeautifulSoup’s support for encoding detection in the UnicodeDammit class.

>>> from BeautifulSoup import UnicodeDammit

>>> def decode_html(html_string):
... converted = UnicodeDammit(html_string, isHTML=True)
... if not converted.unicode:
... raise UnicodeDecodeError(
... "Failed to detect encoding, tried [%s]",
... ’, ’.join(converted.triedEncodings))
... # print converted.originalEncoding
... return converted.unicode

>>> root = lxml.html.fromstring(decode_html(tag_soup))

154

http://blog.ianbicking.org/2008/03/30/python-html-parser-performance/
http://www.crummy.com/software/BeautifulSoup/documentation.html#Beautiful%20Soup%20Gives%20You%20Unicode%2C%20Dammit

Chapter 16

html5lib Parser

html5lib is a Python package that implements the HTML5 parsing algorithm which is heavily influenced by current
browsers and based on the WHATWG HTML5 specification.

lxml can benefit from the parsing capabilities of html5lib through the lxml.html.html5parser module. It
provides a similar interface to the lxml.htmlmodule by providing fromstring(), parse(), document_fromstring(),
fragment_fromstring() and fragments_fromstring() that work like the regular html parsing func-
tions.

Differences to regular HTML parsing

There are a few differences in the returned tree to the regular HTML parsing functions from lxml.html.
html5lib normalizes some elements and element structures to a common format. For example even if a tables
does not have a tbody html5lib will inject one automatically:

>>> from lxml.html import tostring, html5parser
>>> tostring(html5parser.fromstring("<table><td>foo"))
’<table><tbody><tr><td>foo</td></tr></tbody></table>’

Also the parameters the functions accept are different.

Function Reference

parse(filename_url_or_file): Parses the named file or url, or if the object has a .read() method,
parses from that.

document_fromstring(html, guess_charset=True): Parses a document from the given string. This
always creates a correct HTML document, which means the parent node is <html>, and there is a body
and possibly a head.

If a bytestring is passed and guess_charset is true the chardet library (if installed) will guess the charset
if ambiguities exist.

fragment_fromstring(string, create_parent=False, guess_charset=False): Returns
an HTML fragment from a string. The fragment must contain just a single element, unless create_parent
is given; e.g,. fragment_fromstring(string, create_parent=’div’) will wrap the ele-
ment in a <div>. If create_parent is true the default parent tag (div) is used.

155

http://code.google.com/p/html5lib/
http://www.whatwg.org/specs/web-apps/current-work/

Function Reference

If a bytestring is passed and guess_charset is true the chardet library (if installed) will guess the charset
if ambiguities exist.

fragments_fromstring(string, no_leading_text=False, parser=None): Returns a list of
the elements found in the fragment. The first item in the list may be a string. If no_leading_text is
true, then it will be an error if there is leading text, and it will always be a list of only elements.

If a bytestring is passed and guess_charset is true the chardet library (if installed) will guess the charset
if ambiguities exist.

fromstring(string): Returns document_fromstring or fragment_fromstring, based on whether
the string looks like a full document, or just a fragment.

Additionally all parsing functions accept an parser keyword argument that can be set to a custom parser instance.
To create custom parsers you can subclass the HTMLParser and XHTMLParser from the same module. Note
that these are the parser classes provided by html5lib.

156

Part III

Extending lxml

157

Chapter 17

Document loading and URL resolving

The normal way to load external entities (such as DTDs) is by using XML catalogs. Lxml also has support for user
provided document loaders in both the parsers and XSL transformations. These so-called resolvers are subclasses
of the etree.Resolver class.

XML Catalogs

When loading an external entity for a document, e.g. a DTD, the parser is normally configured to prevent network
access (see the no_network parser option). Instead, it will try to load the entity from their local file system path
or, in the most common case that the entity uses a network URL as reference, from a local XML catalog.

XML catalogs are the preferred and agreed-on mechanism to load external entities from XML processors. Most
tools will use them, so it is worth configuring them properly on a system. Many Linux installations use them by
default, but on other systems they may need to get enabled manually. The libxml2 site has some documentation
on how to set up XML catalogs

URI Resolvers

Here is an example of a custom resolver:

>>> from lxml import etree

>>> class DTDResolver(etree.Resolver):
... def resolve(self, url, id, context):
... print("Resolving URL ’%s’" % url)
... return self.resolve_string(
... ’<!ENTITY myentity "[resolved text: %s]">’ % url, context)

This defines a resolver that always returns a dynamically generated DTD fragment defining an entity. The url
argument passes the system URL of the requested document, the id argument is the public ID. Note that any of
these may be None. The context object is not normally used by client code.

Resolving is based on the methods of the Resolver object that build internal representations of the result document.
The following methods exist:

∙ resolve_string takes a parsable string as result document

158

http://www.oasis-open.org/committees/entity/spec.html
http://xmlsoft.org/
http://xmlsoft.org/catalog.html

Document loading in context

∙ resolve_filename takes a filename

∙ resolve_file takes an open file-like object that has at least a read() method

∙ resolve_empty resolves into an empty document

The resolve() method may choose to return None, in which case the next registered resolver (or the de-
fault resolver) is consulted. Resolving always terminates if resolve() returns the result of any of the above
resolve_*() methods.

Resolvers are registered local to a parser:

>>> parser = etree.XMLParser(load_dtd=True)
>>> parser.resolvers.add(DTDResolver())

Note that we instantiate a parser that loads the DTD. This is not done by the default parser, which does no
validation. When we use this parser to parse a document that requires resolving a URL, it will call our custom
resolver:

>>> xml = ’<!DOCTYPE doc SYSTEM "MissingDTD.dtd"><doc>&myentity;</doc>’
>>> tree = etree.parse(StringIO(xml), parser)
Resolving URL ’MissingDTD.dtd’
>>> root = tree.getroot()
>>> print(root.text)
[resolved text: MissingDTD.dtd]

The entity in the document was correctly resolved by the generated DTD fragment.

Document loading in context

XML documents memorise their initial parser (and its resolvers) during their life-time. This means that a lookup
process related to a document will use the resolvers of the document’s parser. We can demonstrate this with a
resolver that only responds to a specific prefix:

>>> class PrefixResolver(etree.Resolver):
... def __init__(self, prefix):
... self.prefix = prefix
... self.result_xml = ’’’\
... <xsl:stylesheet
... xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
... <test xmlns="testNS">%s-TEST</test>
... </xsl:stylesheet>
... ’’’ % prefix
... def resolve(self, url, pubid, context):
... if url.startswith(self.prefix):
... print("Resolved url %s as prefix %s" % (url, self.prefix))
... return self.resolve_string(self.result_xml, context)

We demonstrate this in XSLT and use the following stylesheet as an example:

>>> xml_text = """\
... <xsl:stylesheet version="1.0"
... xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
... <xsl:include href="honk:test"/>
... <xsl:template match="/">
... <test>
... <xsl:value-of select="document(’hoi:test’)/*/*/text()"/>

159

Document loading in context

... </test>

... </xsl:template>

... </xsl:stylesheet>

... """

Note that it needs to resolve two URIs: honk:test when compiling the XSLT document (i.e. when resolv-
ing xsl:import and xsl:include elements) and hoi:test at transformation time, when calls to the
document function are resolved. If we now register different resolvers with two different parsers, we can parse
our document twice in different resolver contexts:

>>> hoi_parser = etree.XMLParser()
>>> normal_doc = etree.parse(StringIO(xml_text), hoi_parser)

>>> hoi_parser.resolvers.add(PrefixResolver("hoi"))
>>> hoi_doc = etree.parse(StringIO(xml_text), hoi_parser)

>>> honk_parser = etree.XMLParser()
>>> honk_parser.resolvers.add(PrefixResolver("honk"))
>>> honk_doc = etree.parse(StringIO(xml_text), honk_parser)

These contexts are important for the further behaviour of the documents. They memorise their original parser so
that the correct set of resolvers is used in subsequent lookups. To compile the stylesheet, XSLT must resolve the
honk:test URI in the xsl:include element. The hoi resolver cannot do that:

>>> transform = etree.XSLT(normal_doc)
Traceback (most recent call last):

...
lxml.etree.XSLTParseError: Cannot resolve URI honk:test

>>> transform = etree.XSLT(hoi_doc)
Traceback (most recent call last):

...
lxml.etree.XSLTParseError: Cannot resolve URI honk:test

However, if we use the honk resolver associated with the respective document, everything works fine:

>>> transform = etree.XSLT(honk_doc)
Resolved url honk:test as prefix honk

Running the transform accesses the same parser context again, but since it now needs to resolve the hoi URI in
the call to the document function, its honk resolver will fail to do so:

>>> result = transform(normal_doc)
Traceback (most recent call last):

...
lxml.etree.XSLTApplyError: Cannot resolve URI hoi:test

>>> result = transform(hoi_doc)
Traceback (most recent call last):

...
lxml.etree.XSLTApplyError: Cannot resolve URI hoi:test

>>> result = transform(honk_doc)
Traceback (most recent call last):

...
lxml.etree.XSLTApplyError: Cannot resolve URI hoi:test

This can only be solved by adding a hoi resolver to the original parser:

160

I/O access control in XSLT

>>> honk_parser.resolvers.add(PrefixResolver("hoi"))
>>> result = transform(honk_doc)
Resolved url hoi:test as prefix hoi
>>> print(str(result)[:-1])
<?xml version="1.0"?>
<test>hoi-TEST</test>

We can see that the hoi resolver was called to generate a document that was then inserted into the result document
by the XSLT transformation. Note that this is completely independent of the XML file you transform, as the URI
is resolved from within the stylesheet context:

>>> result = transform(normal_doc)
Resolved url hoi:test as prefix hoi
>>> print(str(result)[:-1])
<?xml version="1.0"?>
<test>hoi-TEST</test>

It may be seen as a matter of taste what resolvers the generated document inherits. For XSLT, the output document
inherits the resolvers of the input document and not those of the stylesheet. Therefore, the last result does not
inherit any resolvers at all.

I/O access control in XSLT

By default, XSLT supports all extension functions from libxslt and libexslt as well as Python regular expressions
through EXSLT. Some extensions enable style sheets to read and write files on the local file system.

XSLT has a mechanism to control the access to certain I/O operations during the transformation process. This is
most interesting where XSL scripts come from potentially insecure sources and must be prevented from modifying
the local file system. Note, however, that there is no way to keep them from eating up your precious CPU time, so
this should not stop you from thinking about what XSLT you execute.

Access control is configured using the XSLTAccessControl class. It can be called with a number of keyword
arguments that allow or deny specific operations:

>>> transform = etree.XSLT(honk_doc)
Resolved url honk:test as prefix honk
>>> result = transform(normal_doc)
Resolved url hoi:test as prefix hoi

>>> ac = etree.XSLTAccessControl(read_network=False)
>>> transform = etree.XSLT(honk_doc, access_control=ac)
Resolved url honk:test as prefix honk
>>> result = transform(normal_doc)
Traceback (most recent call last):

...
lxml.etree.XSLTApplyError: xsltLoadDocument: read rights for hoi:test denied

There are a few things to keep in mind:

∙ XSL parsing (xsl:import, etc.) is not affected by this mechanism

∙ read_file=False does not imply write_file=False, all controls are independent.

∙ read_file only applies to files in the file system. Any other scheme for URLs is controlled by the
*_network keywords.

∙ If you need more fine-grained control than switching access on and off, you should consider writing a

161

I/O access control in XSLT

custom document loader that returns empty documents or raises exceptions if access is denied.

162

Chapter 18

Python extensions for XPath and XSLT

This document describes how to use Python extension functions in XPath and XSLT like this:

<xsl:value-of select="f:myPythonFunction(.//sometag)" />

and extension elements in XSLT as in the following example:

<xsl:template match="*">
<my:python-extension>

<some-content />
</my:python-extension>

</xsl:template>

XPath Extension functions

Here is how an extension function looks like. As the first argument, it always receives a context object (see below).
The other arguments are provided by the respective call in the XPath expression, one in the following examples.
Any number of arguments is allowed:

>>> def hello(context, a):
... return "Hello %s" % a
>>> def ola(context, a):
... return "Ola %s" % a
>>> def loadsofargs(context, *args):
... return "Got %d arguments." % len(args)

The FunctionNamespace

In order to use a function in XPath or XSLT, it needs to have a (namespaced) name by which it can be called during
evaluation. This is done using the FunctionNamespace class. For simplicity, we choose the empty namespace
(None):

>>> from lxml import etree
>>> ns = etree.FunctionNamespace(None)
>>> ns[’hello’] = hello
>>> ns[’countargs’] = loadsofargs

163

Global prefix assignment XPath Extension functions

This registers the function hello with the name hello in the default namespace (None), and the function loadsofargs
with the name countargs. Now we’re going to create a document that we can run XPath expressions against:

>>> root = etree.XML(’<a>Haegar’)
>>> doc = etree.ElementTree(root)

Done. Now we can have XPath expressions call our new function:

>>> print(root.xpath("hello(’Dr. Falken’)"))
Hello Dr. Falken
>>> print(root.xpath(’hello(local-name(*))’))
Hello b
>>> print(root.xpath(’hello(string(b))’))
Hello Haegar
>>> print(root.xpath(’countargs(., b, ./*)’))
Got 3 arguments.

Note how we call both a Python function (hello) and an XPath built-in function (string) in exactly the same way.
Normally, however, you would want to separate the two in different namespaces. The FunctionNamespace class
allows you to do this:

>>> ns = etree.FunctionNamespace(’http://mydomain.org/myfunctions’)
>>> ns[’hello’] = hello
>>> prefixmap = {’f’ : ’http://mydomain.org/myfunctions’}
>>> print(root.xpath(’f:hello(local-name(*))’, namespaces=prefixmap))
Hello b

Global prefix assignment

In the last example, you had to specify a prefix for the function namespace. If you always use the same prefix for
a function namespace, you can also register it with the namespace:

>>> ns = etree.FunctionNamespace(’http://mydomain.org/myother/functions’)
>>> ns.prefix = ’es’
>>> ns[’hello’] = ola
>>> print(root.xpath(’es:hello(local-name(*))’))
Ola b

This is a global assignment, so take care not to assign the same prefix to more than one namespace. The resulting
behaviour in that case is completely undefined. It is always a good idea to consistently use the same meaningful
prefix for each namespace throughout your application.

The prefix assignment only works with functions and FunctionNamespace objects, not with the general Namespace
object that registers element classes. The reasoning is that elements in lxml do not care about prefixes anyway, so
it would rather complicate things than be of any help.

The XPath context

Functions get a context object as first parameter. In lxml 1.x, this value was None, but since lxml 2.0 it provides
two properties: eval_context and context_node. The context node is the Element where the current
function is called:

>>> def print_tag(context, nodes):
... print("%s: %s" % (context.context_node.tag, [n.tag for n in nodes]))

164

Evaluators and XSLT XPath Extension functions

>>> ns = etree.FunctionNamespace(’http://mydomain.org/printtag’)
>>> ns.prefix = "pt"
>>> ns["print_tag"] = print_tag

>>> ignore = root.xpath("//*[pt:print_tag(.//*)]")
a: [’b’]
b: []

The eval_context is a dictionary that is local to the evaluation. It allows functions to keep state:

>>> def print_context(context):
... context.eval_context[context.context_node.tag] = "done"
... print(sorted(context.eval_context.items()))
>>> ns["print_context"] = print_context

>>> ignore = root.xpath("//*[pt:print_context()]")
[(’a’, ’done’)]
[(’a’, ’done’), (’b’, ’done’)]

Evaluators and XSLT

Extension functions work for all ways of evaluating XPath expressions and for XSL transformations:

>>> e = etree.XPathEvaluator(doc)
>>> print(e(’es:hello(local-name(/a))’))
Ola a

>>> namespaces = {’f’ : ’http://mydomain.org/myfunctions’}
>>> e = etree.XPathEvaluator(doc, namespaces=namespaces)
>>> print(e(’f:hello(local-name(/a))’))
Hello a

>>> xslt = etree.XSLT(etree.XML(’’’
... <stylesheet version="1.0"
... xmlns="http://www.w3.org/1999/XSL/Transform"
... xmlns:es="http://mydomain.org/myother/functions">
... <output method="text" encoding="ASCII"/>
... <template match="/">
... <value-of select="es:hello(string(//b))"/>
... </template>
... </stylesheet>
... ’’’))
>>> print(xslt(doc))
Ola Haegar

It is also possible to register namespaces with a single evaluator after its creation. While the following example
involves no functions, the idea should still be clear:

>>> f = StringIO(’’)
>>> ns_doc = etree.parse(f)
>>> e = etree.XPathEvaluator(ns_doc)
>>> e(’/a’)
[]

This returns nothing, as we did not ask for the right namespace. When we register the namespace with the
evaluator, however, we can access it via a prefix:

165

Evaluator-local extensions XPath Extension functions

>>> e.register_namespace(’foo’, ’http://mydomain.org/myfunctions’)
>>> e(’/foo:a’)[0].tag
’{http://mydomain.org/myfunctions}a’

Note that this prefix mapping is only known to this evaluator, as opposed to the global mapping of the Function-
Namespace objects:

>>> e2 = etree.XPathEvaluator(ns_doc)
>>> e2(’/foo:a’)
Traceback (most recent call last):
...
lxml.etree.XPathEvalError: Undefined namespace prefix

Evaluator-local extensions

Apart from the global registration of extension functions, there is also a way of making extensions known to a
single Evaluator or XSLT. All evaluators and the XSLT object accept a keyword argument extensions in their
constructor. The value is a dictionary mapping (namespace, name) tuples to functions:

>>> extensions = {(’local-ns’, ’local-hello’) : hello}
>>> namespaces = {’l’ : ’local-ns’}

>>> e = etree.XPathEvaluator(doc, namespaces=namespaces, extensions=extensions)
>>> print(e(’l:local-hello(string(b))’))
Hello Haegar

For larger numbers of extension functions, you can define classes or modules and use the Extension helper:

>>> class MyExt:
... def function1(self, _, arg):
... return ’1’+arg
... def function2(self, _, arg):
... return ’2’+arg
... def function3(self, _, arg):
... return ’3’+arg

>>> ext_module = MyExt()
>>> functions = (’function1’, ’function2’)
>>> extensions = etree.Extension(ext_module, functions, ns=’local-ns’)

>>> e = etree.XPathEvaluator(doc, namespaces=namespaces, extensions=extensions)
>>> print(e(’l:function1(string(b))’))
1Haegar

The optional second argument to Extension can either be be a sequence of names to select from the module,
a dictionary that explicitly maps function names to their XPath alter-ego or None (explicitly passed) to take all
available functions under their original name (if their name does not start with ’_’).

The additional ns keyword argument takes a namespace URI or None (also if left out) for the default namespace.
The following examples will therefore all do the same thing:

>>> functions = (’function1’, ’function2’, ’function3’)
>>> extensions = etree.Extension(ext_module, functions)
>>> e = etree.XPathEvaluator(doc, extensions=extensions)
>>> print(e(’function1(function2(function3(string(b))))’))
123Haegar

166

What to return from a function XPath Extension functions

>>> extensions = etree.Extension(ext_module, functions, ns=None)
>>> e = etree.XPathEvaluator(doc, extensions=extensions)
>>> print(e(’function1(function2(function3(string(b))))’))
123Haegar

>>> extensions = etree.Extension(ext_module)
>>> e = etree.XPathEvaluator(doc, extensions=extensions)
>>> print(e(’function1(function2(function3(string(b))))’))
123Haegar

>>> functions = {
... ’function1’ : ’function1’,
... ’function2’ : ’function2’,
... ’function3’ : ’function3’
... }
>>> extensions = etree.Extension(ext_module, functions)
>>> e = etree.XPathEvaluator(doc, extensions=extensions)
>>> print(e(’function1(function2(function3(string(b))))’))
123Haegar

For convenience, you can also pass a sequence of extensions:

>>> extensions1 = etree.Extension(ext_module)
>>> extensions2 = etree.Extension(ext_module, ns=’local-ns’)
>>> e = etree.XPathEvaluator(doc, extensions=[extensions1, extensions2],
... namespaces=namespaces)
>>> print(e(’function1(l:function2(function3(string(b))))’))
123Haegar

What to return from a function

Extension functions can return any data type for which there is an XPath equivalent (see the documentation on
XPath return values). This includes numbers, boolean values, elements and lists of elements. Note that integers
will also be returned as floats:

>>> def returnsFloat(_):
... return 1.7
>>> def returnsInteger(_):
... return 1
>>> def returnsBool(_):
... return True
>>> def returnFirstNode(_, nodes):
... return nodes[0]

>>> ns = etree.FunctionNamespace(None)
>>> ns[’float’] = returnsFloat
>>> ns[’int’] = returnsInteger
>>> ns[’bool’] = returnsBool
>>> ns[’first’] = returnFirstNode

>>> e = etree.XPathEvaluator(doc)
>>> e("float()")
1.7
>>> e("int()")

167

What to return from a function XPath Extension functions

1.0
>>> int(e("int()"))
1
>>> e("bool()")
True
>>> e("count(first(//b))")
1.0

As the last example shows, you can pass the results of functions back into the XPath expression. Elements and
sequences of elements are treated as XPath node-sets:

>>> def returnsNodeSet(_):
... results1 = etree.Element(’results1’)
... etree.SubElement(results1, ’result’).text = "Alpha"
... etree.SubElement(results1, ’result’).text = "Beta"
...
... results2 = etree.Element(’results2’)
... etree.SubElement(results2, ’result’).text = "Gamma"
... etree.SubElement(results2, ’result’).text = "Delta"
...
... results3 = etree.SubElement(results2, ’subresult’)
... return [results1, results2, results3]

>>> ns[’new-node-set’] = returnsNodeSet

>>> e = etree.XPathEvaluator(doc)

>>> r = e("new-node-set()/result")
>>> print([t.text for t in r])
[’Alpha’, ’Beta’, ’Gamma’, ’Delta’]

>>> r = e("new-node-set()")
>>> print([t.tag for t in r])
[’results1’, ’results2’, ’subresult’]
>>> print([len(t) for t in r])
[2, 3, 0]
>>> r[0][0].text
’Alpha’

>>> etree.tostring(r[0])
b’<results1><result>Alpha</result><result>Beta</result></results1>’

>>> etree.tostring(r[1])
b’<results2><result>Gamma</result><result>Delta</result><subresult/></results2>’

>>> etree.tostring(r[2])
b’<subresult/>’

The current implementation deep-copies newly created elements in node-sets. Only the elements and their children
are passed on, no outlying parents or tail texts will be available in the result. This also means that in the above
example, the subresult elements in results2 and results3 are no longer identical within the node-set, they belong
to independent trees:

>>> print("%s - %s" % (r[1][-1].tag, r[2].tag))
subresult - subresult
>>> print(r[1][-1] == r[2])
False

168

XSLT extension elements

>>> print(r[1][-1].getparent().tag)
results2
>>> print(r[2].getparent())
None

This is an implementation detail that you should be aware of, but you should avoid relying on it in your code. Note
that elements taken from the source document (the most common case) do not suffer from this restriction. They
will always be passed unchanged.

XSLT extension elements

Just like the XPath extension functions described above, lxml supports custom extension elements in XSLT. This
means, you can write XSLT code like this:

<xsl:template match="*">
<my:python-extension>

<some-content />
</my:python-extension>

</xsl:template>

And then you can implement the element in Python like this:

>>> class MyExtElement(etree.XSLTExtension):
... def execute(self, context, self_node, input_node, output_parent):
... print("Hello from XSLT!")
... output_parent.text = "I did it!"
... # just copy own content input to output
... output_parent.extend(list(self_node))

The arguments passed to the .execute() method are

context The opaque evaluation context. You need this when calling back into the XSLT processor.

self_node A read-only Element object that represents the extension element in the stylesheet.

input_node The current context Element in the input document (also read-only).

output_parent The current insertion point in the output document. You can append elements or set the text value
(not the tail). Apart from that, the Element is read-only.

Declaring extension elements

In XSLT, extension elements can be used like any other XSLT element, except that they must be declared as
extensions using the standard XSLT extension-element-prefixes option:

>>> xslt_ext_tree = etree.XML(’’’
... <xsl:stylesheet version="1.0"
... xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
... xmlns:my="testns"
... extension-element-prefixes="my">
... <xsl:template match="/">
... <foo><my:ext><child>XYZ</child></my:ext></foo>
... </xsl:template>
... <xsl:template match="child">
... <CHILD>--xyz--</CHILD>

169

Applying XSL templates XSLT extension elements

... </xsl:template>

... </xsl:stylesheet>’’’)

To register the extension, add its namespace and name to the extension mapping of the XSLT object:

>>> my_extension = MyExtElement()
>>> extensions = { (’testns’, ’ext’) : my_extension }
>>> transform = etree.XSLT(xslt_ext_tree, extensions = extensions)

Note how we pass an instance here, not the class of the extension. Now we can run the transformation and see
how our extension is called:

>>> root = etree.XML(’<dummy/>’)
>>> result = transform(root)
Hello from XSLT!
>>> str(result)
’<?xml version="1.0"?>\n<foo>I did it!<child>XYZ</child></foo>\n’

Applying XSL templates

XSLT extensions are a very powerful feature that allows you to interact directly with the XSLT processor. You
have full read-only access to the input document and the stylesheet, and you can even call back into the XSLT
processor to process templates. Here is an example that passes an Element into the .apply_templates()
method of the XSLTExtension instance:

>>> class MyExtElement(etree.XSLTExtension):
... def execute(self, context, self_node, input_node, output_parent):
... child = self_node[0]
... results = self.apply_templates(context, child)
... output_parent.append(results[0])

>>> my_extension = MyExtElement()
>>> extensions = { (’testns’, ’ext’) : my_extension }
>>> transform = etree.XSLT(xslt_ext_tree, extensions = extensions)

>>> root = etree.XML(’<dummy/>’)
>>> result = transform(root)
>>> str(result)
’<?xml version="1.0"?>\n<foo><CHILD>--xyz--</CHILD></foo>\n’

Here, we applied the templates to a child of the extension element itself, i.e. to an element inside the stylesheet
instead of an element of the input document.

The return value of .apply_templates() is always a list. It may contain a mix of elements and strings,
collected from the XSLT processing result. If you want to append these values to the output parent, be aware that
you cannot use the .append() method to add strings. In many cases, you would only be interested in elements
anyway, so you can discard strings (e.g. formatting whitespace) and append the rest.

If you want to include string results in the output, you can either build an appropriate tree yourself and append
that, or you can manually add the string values to the current output tree, e.g. by concatenating them with the
.tail of the last element that was appended.

Note that you can also let lxml build the result tree for you by passing the output_parent into the .apply_templates()
method. In this case, the result will be None and all content found by applying templates will be appended to the
output parent.

170

Working with read-only elements XSLT extension elements

If you do not care about string results at all, e.g. because you already know that they will only contain whitespace,
you can pass the option elements_only=True to the .apply_templates()method, or pass remove_blank_text=True
to remove only those strings that consist entirely of whitespace.

Working with read-only elements

There is one important thing to keep in mind: all Elements that the execute() method gets to deal with are
read-only Elements, so you cannot modify them. They also will not easily work in the API. For example, you
cannot pass them to the tostring() function or wrap them in an ElementTree.

What you can do, however, is to deepcopy them to make them normal Elements, and then modify them using the
normal etree API. So this will work:

>>> from copy import deepcopy
>>> class MyExtElement(etree.XSLTExtension):
... def execute(self, context, self_node, input_node, output_parent):
... child = deepcopy(self_node[0])
... child.text = "NEW TEXT"
... output_parent.append(child)

>>> my_extension = MyExtElement()
>>> extensions = { (’testns’, ’ext’) : my_extension }
>>> transform = etree.XSLT(xslt_ext_tree, extensions = extensions)

>>> root = etree.XML(’<dummy/>’)
>>> result = transform(root)
>>> str(result)
’<?xml version="1.0"?>\n<foo><child>NEW TEXT</child></foo>\n’

171

Chapter 19

Using custom Element classes in lxml

lxml has very sophisticated support for custom Element classes. You can provide your own classes for Elements
and have lxml use them by default for all elements generated by a specific parser, only for a specific tag name in
a specific namespace or even for an exact element at a specific position in the tree.

Custom Elements must inherit from the lxml.etree.ElementBase class, which provides the Element inter-
face for subclasses:

>>> from lxml import etree

>>> class honk(etree.ElementBase):
... @property
... def honking(self):
... return self.get(’honking’) == ’true’

This defines a new Element class honk with a property honking.

The following document describes how you can make lxml.etree use these custom Element classes.

Background on Element proxies

Being based on libxml2, lxml.etree holds the entire XML tree in a C structure. To communicate with Python code,
it creates Python proxy objects for the XML elements on demand.

The mapping between C elements and Python Element classes is completely configurable. When you ask lxml.etree
for an Element by using its API, it will instantiate your classes for you. All you have to do is tell lxml which class
to use for which kind of Element. This is done through a class lookup scheme, as described in the sections below.

Element initialization

There is one thing to know up front. Element classes must not have an __init___ or __new__ method. There
should not be any internal state either, except for the data stored in the underlying XML tree. Element instances
are created and garbage collected at need, so there is normally no way to predict when and how often a proxy

172

Setting up a class lookup scheme

is created for them. Even worse, when the __init__ method is called, the object is not even initialized yet to
represent the XML tag, so there is not much use in providing an __init__ method in subclasses.

Most use cases will not require any class initialisation or proxy state, so you can content yourself with skipping to
the next section for now. However, if you really need to set up your element class on instantiation, or need a way
to persistently store state in the proxy instances instead of the XML tree, here is a way to do so.

There is one important guarantee regarding Element proxies. Once a proxy has been instantiated, it will keep alive
as long as there is a Python reference to it, and any access to the XML element in the tree will return this very
instance. Therefore, if you need to store local state in a custom Element class (which is generally discouraged),
you can do so by keeping the Elements in a tree alive. If the tree doesn’t change, you can simply do this:

proxy_cache = list(root.iter())

or

proxy_cache = set(root.iter())

or use any other suitable container. Note that you have to keep this cache manually up to date if the tree changes,
which can get tricky in cases.

For proxy initialisation, ElementBase classes have an _init() method that can be overridden, as oppose to the
normal __init__() method. It can be used to modify the XML tree, e.g. to construct special children or verify
and update attributes.

The semantics of _init() are as follows:

∙ It is called once on Element class instantiation time. That is, when a Python representation of the element
is created by lxml. At that time, the element object is completely initialized to represent a specific XML
element within the tree.

∙ The method has complete access to the XML tree. Modifications can be done in exactly the same way as
anywhere else in the program.

∙ Python representations of elements may be created multiple times during the lifetime of an XML element
in the underlying C tree. The _init() code provided by subclasses must take special care by itself that
multiple executions either are harmless or that they are prevented by some kind of flag in the XML tree.
The latter can be achieved by modifying an attribute value or by removing or adding a specific child node
and then verifying this before running through the init process.

∙ Any exceptions raised in _init() will be propagated throught the API call that lead to the creation of the
Element. So be careful with the code you write here as its exceptions may turn up in various unexpected
places.

Setting up a class lookup scheme

The first thing to do when deploying custom element classes is to register a class lookup scheme on a parser.
lxml.etree provides quite a number of different schemes that also support class lookup based on namespaces or
attribute values. Most lookups support fallback chaining, which allows the next lookup mechanism to take over
when the previous one fails to find a class.

For example, setting the honk Element as a default element class for a parser works as follows:

>>> parser_lookup = etree.ElementDefaultClassLookup(element=honk)
>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup(parser_lookup)

There is one drawback of the parser based scheme: the Element() factory does not know about your specialised

173

Default class lookup Setting up a class lookup scheme

parser and creates a new document that deploys the default parser:

>>> el = etree.Element("root")
>>> print(isinstance(el, honk))
False

You should therefore avoid using this factory function in code that uses custom classes. The makeelement()
method of parsers provides a simple replacement:

>>> el = parser.makeelement("root")
>>> print(isinstance(el, honk))
True

If you use a parser at the module level, you can easily redirect a module level Element() factory to the parser
method by adding code like this:

>>> module_level_parser = etree.XMLParser()
>>> Element = module_level_parser.makeelement

While the XML() and HTML() factories also depend on the default parser, you can pass them a different parser
as second argument:

>>> element = etree.XML("<test/>")
>>> print(isinstance(element, honk))
False

>>> element = etree.XML("<test/>", parser)
>>> print(isinstance(element, honk))
True

Whenever you create a document with a parser, it will inherit the lookup scheme and all subsequent element
instantiations for this document will use it:

>>> element = etree.fromstring("<test/>", parser)
>>> print(isinstance(element, honk))
True
>>> el = etree.SubElement(element, "subel")
>>> print(isinstance(el, honk))
True

For testing code in the Python interpreter and for small projects, you may also consider setting a lookup scheme on
the default parser. To avoid interfering with other modules, however, it is usually a better idea to use a dedicated
parser for each module (or a parser pool when using threads) and then register the required lookup scheme only
for this parser.

Default class lookup

This is the most simple lookup mechanism. It always returns the default element class. Consequently, no further
fallbacks are supported, but this scheme is a nice fallback for other custom lookup mechanisms.

Usage:

>>> lookup = etree.ElementDefaultClassLookup()
>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup(lookup)

Note that the default for new parsers is to use the global fallback, which is also the default lookup (if not configured
otherwise).

174

Namespace class lookup Setting up a class lookup scheme

To change the default element implementation, you can pass your new class to the constructor. While it accepts
classes for element, comment and pi nodes, most use cases will only override the element class:

>>> el = parser.makeelement("myelement")
>>> print(isinstance(el, honk))
False

>>> lookup = etree.ElementDefaultClassLookup(element=honk)
>>> parser.set_element_class_lookup(lookup)

>>> el = parser.makeelement("myelement")
>>> print(isinstance(el, honk))
True
>>> el.honking
False
>>> el = parser.makeelement("myelement", honking=’true’)
>>> etree.tostring(el)
b’<myelement honking="true"/>’
>>> el.honking
True

Namespace class lookup

This is an advanced lookup mechanism that supports namespace/tag-name specific element classes. You can select
it by calling:

>>> lookup = etree.ElementNamespaceClassLookup()
>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup(lookup)

See the separate section on implementing namespaces below to learn how to make use of it.

This scheme supports a fallback mechanism that is used in the case where the namespace is not found or no class
was registered for the element name. Normally, the default class lookup is used here. To change it, pass the desired
fallback lookup scheme to the constructor:

>>> fallback = etree.ElementDefaultClassLookup(element=honk)
>>> lookup = etree.ElementNamespaceClassLookup(fallback)
>>> parser.set_element_class_lookup(lookup)

Attribute based lookup

This scheme uses a mapping from attribute values to classes. An attribute name is set at initialisation time and is
then used to find the corresponding value in a dictionary. It is set up as follows:

>>> id_class_mapping = {’1234’ : honk} # maps attribute values to classes

>>> lookup = etree.AttributeBasedElementClassLookup(
... ’id’, id_class_mapping)
>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup(lookup)

And here is how to use it:

175

Custom element class lookup Setting up a class lookup scheme

>>> xml = ’<b id="1234"/><b id="1234" honking="true"/>’
>>> a = etree.fromstring(xml, parser)

>>> a.honking # id does not match !
Traceback (most recent call last):
AttributeError: ’lxml.etree._Element’ object has no attribute ’honking’

>>> a[0].honking
False
>>> a[1].honking
True

This lookup scheme uses its fallback if the attribute is not found or its value is not in the mapping. Normally, the
default class lookup is used here. If you want to use the namespace lookup, for example, you can use this code:

>>> fallback = etree.ElementNamespaceClassLookup()
>>> lookup = etree.AttributeBasedElementClassLookup(
... ’id’, id_class_mapping, fallback)
>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup(lookup)

Custom element class lookup

This is the most customisable way of finding element classes on a per-element basis. It allows you to implement
a custom lookup scheme in a subclass:

>>> class MyLookup(etree.CustomElementClassLookup):
... def lookup(self, node_type, document, namespace, name):
... return honk # be a bit more selective here ...

>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup(MyLookup())

The .lookup() method must return either None (which triggers the fallback mechanism) or a subclass of
lxml.etree.ElementBase. It can take any decision it wants based on the node type (one of “element”,
“comment”, “PI”, “entity”), the XML document of the element, or its namespace or tag name.

Tree based element class lookup in Python

Taking more elaborate decisions than allowed by the custom scheme is difficult to achieve in pure Python, as it
results in a chicken-and-egg problem. It would require access to the tree - before the elements in the tree have
been instantiated as Python Element proxies.

Luckily, there is a way to do this. The PythonElementClassLookup works similar to the custom lookup
scheme:

>>> class MyLookup(etree.PythonElementClassLookup):
... def lookup(self, document, element):
... return MyElementClass # defined elsewhere

>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup(MyLookup())

As before, the first argument to the lookup()method is the opaque document instance that contains the Element.
The second arguments is a lightweight Element proxy implementation that is only valid during the lookup. Do

176

Implementing namespaces

not try to keep a reference to it. Once the lookup is finished, the proxy will become invalid. You will get an
AssertionError if you access any of the properties or methods outside the scope of the lookup call where
they were instantiated.

During the lookup, the element object behaves mostly like a normal Element instance. It provides the properties
tag, text, tail etc. and supports indexing, slicing and the getchildren(), getparent() etc. methods.
It does not support iteration, nor does it support any kind of modification. All of its properties are read-only and
it cannot be removed or inserted into other trees. You can use it as a starting point to freely traverse the tree and
collect any kind of information that its elements provide. Once you have taken the decision which class to use for
this element, you can simply return it and have lxml take care of cleaning up the instantiated proxy classes.

Sidenote: this lookup scheme originally lived in a separate module called lxml.pyclasslookup.

Generating XML with custom classes

Up to lxml 2.1, you could not instantiate proxy classes yourself. Only lxml.etree could do that when creating an
object representation of an existing XML element. Since lxml 2.2, however, instantiating this class will simply
create a new Element:

>>> el = honk(honking = ’true’)
>>> el.tag
’honk’
>>> el.honking
True

Note, however, that the proxy you create here will be garbage collected just like any other proxy. You can therefore
not count on lxml.etree using the same class that you instantiated when you access this Element a second time after
letting its reference go. You should therefore always use a corresponding class lookup scheme that returns your
Element proxy classes for the elements that they create. The ElementNamespaceClassLookup is generally
a good match.

You can use custom Element classes to quickly create XML fragments:

>>> class hale(etree.ElementBase): pass
>>> class bopp(etree.ElementBase): pass

>>> el = hale("some ", honk(honking = ’true’), bopp, " text")

>>> print(etree.tostring(el, encoding=’unicode’))
<hale>some <honk honking="true"/><bopp/> text</hale>

Implementing namespaces

lxml allows you to implement namespaces, in a rather literal sense. After setting up the namespace class lookup
mechanism as described above, you can build a new element namespace (or retrieve an existing one) by calling
the get_namespace(uri) method of the lookup:

>>> lookup = etree.ElementNamespaceClassLookup()
>>> parser = etree.XMLParser()
>>> parser.set_element_class_lookup(lookup)

>>> namespace = lookup.get_namespace(’http://hui.de/honk’)

and then register the new element type with that namespace, say, under the tag name honk:

177

Implementing namespaces

>>> namespace[’honk’] = honk

If you have many Element classes declared in one module, and they are all named like the elements they create,
you can simply use namespace.update(vars()) at the end of your module to declare them automatically.
The implementation is smart enough to ignore everything that is not an Element class.

After this, you create and use your XML elements through the normal API of lxml:

>>> xml = ’<honk xmlns="http://hui.de/honk" honking="true"/>’
>>> honk_element = etree.XML(xml, parser)
>>> print(honk_element.honking)
True

The same works when creating elements by hand:

>>> honk_element = parser.makeelement(’{http://hui.de/honk}honk’,
... honking=’true’)
>>> print(honk_element.honking)
True

Essentially, what this allows you to do, is to give Elements a custom API based on their namespace and tag name.

A somewhat related topic are extension functions which use a similar mechanism for registering extension func-
tions in XPath and XSLT.

In the setup example above, we associated the honk Element class only with the ’honk’ element. If an XML tree
contains different elements in the same namespace, they do not pick up the same implementation:

>>> xml = ’<honk xmlns="http://hui.de/honk" honking="true"><bla/></honk>’
>>> honk_element = etree.XML(xml, parser)
>>> print(honk_element.honking)
True
>>> print(honk_element[0].honking)
Traceback (most recent call last):
...
AttributeError: ’lxml.etree._Element’ object has no attribute ’honking’

You can therefore provide one implementation per element name in each namespace and have lxml select the right
one on the fly. If you want one element implementation per namespace (ignoring the element name) or prefer
having a common class for most elements except a few, you can specify a default implementation for an entire
namespace by registering that class with the empty element name (None).

You may consider following an object oriented approach here. If you build a class hierarchy of element classes,
you can also implement a base class for a namespace that is used if no specific element class is provided. Again,
you can just pass None as an element name:

>>> class HonkNSElement(etree.ElementBase):
... def honk(self):
... return "HONK"
>>> namespace[None] = HonkNSElement # default Element for namespace

>>> class HonkElement(HonkNSElement):
... @property
... def honking(self):
... return self.get(’honking’) == ’true’
>>> namespace[’honk’] = HonkElement # Element for specific tag

Now you can rely on lxml to always return objects of type HonkNSElement or its subclasses for elements of this
namespace:

178

Implementing namespaces

>>> xml = ’<honk xmlns="http://hui.de/honk" honking="true"><bla/></honk>’
>>> honk_element = etree.XML(xml, parser)

>>> print(type(honk_element))
<class ’HonkElement’>
>>> print(type(honk_element[0]))
<class ’HonkNSElement’>

>>> print(honk_element.honking)
True
>>> print(honk_element.honk())
HONK

>>> print(honk_element[0].honk())
HONK
>>> print(honk_element[0].honking)
Traceback (most recent call last):
...
AttributeError: ’HonkNSElement’ object has no attribute ’honking’

179

Chapter 20

Sax support

In this document we’ll describe lxml’s SAX support. lxml has support for producing SAX events for an Element-
Tree or Element. lxml can also turn SAX events into an ElementTree. The SAX API used by lxml is compatible
with that in the Python core (xml.sax), so is useful for interfacing lxml with code that uses the Python core SAX
facilities.

Building a tree from SAX events

First of all, lxml has support for building a new tree given SAX events. To do this, we use the special SAX content
handler defined by lxml named lxml.sax.ElementTreeContentHandler:

>>> import lxml.sax
>>> handler = lxml.sax.ElementTreeContentHandler()

Now let’s fire some SAX events at it:

>>> handler.startElementNS((None, ’a’), ’a’, {})
>>> handler.startElementNS((None, ’b’), ’b’, {(None, ’foo’): ’bar’})
>>> handler.characters(’Hello world’)
>>> handler.endElementNS((None, ’b’), ’b’)
>>> handler.endElementNS((None, ’a’), ’a’)

This constructs an equivalent tree. You can access it through the etree property of the handler:

>>> tree = handler.etree
>>> lxml.etree.tostring(tree.getroot())
b’<a><b foo="bar">Hello world’

By passing a makeelement function the constructor of ElementTreeContentHandler, e.g. the one of a
parser you configured, you can determine which element class lookup scheme should be used.

Producing SAX events from an ElementTree or Element

Let’s make a tree we can generate SAX events for:

>>> f = StringIO(’<a>Text’)
>>> tree = lxml.etree.parse(f)

180

Interfacing with pulldom/minidom

To see whether the correct SAX events are produced, we’ll write a custom content handler.:

>>> from xml.sax.handler import ContentHandler
>>> class MyContentHandler(ContentHandler):
... def __init__(self):
... self.a_amount = 0
... self.b_amount = 0
... self.text = None
...
... def startElementNS(self, name, qname, attributes):
... uri, localname = name
... if localname == ’a’:
... self.a_amount += 1
... if localname == ’b’:
... self.b_amount += 1
...
... def characters(self, data):
... self.text = data

Note that it only defines the startElementNS() method and not startElement(). The SAX event generator in
lxml.sax currently only supports namespace-aware processing.

To test the content handler, we can produce SAX events from the tree:

>>> handler = MyContentHandler()
>>> lxml.sax.saxify(tree, handler)

This is what we expect:

>>> handler.a_amount
1
>>> handler.b_amount
1
>>> handler.text
’Text’

Interfacing with pulldom/minidom

lxml.sax is a simple way to interface with the standard XML support in the Python library. Note, however, that
this is a one-way solution, as Python’s DOM implementation connot generate SAX events from a DOM tree.

You can use xml.dom.pulldom to build a minidom from lxml:

>>> from xml.dom.pulldom import SAX2DOM
>>> handler = SAX2DOM()
>>> lxml.sax.saxify(tree, handler)

PullDOM makes the result available through the document attribute:

>>> dom = handler.document
>>> print(dom.firstChild.localName)
a

181

Chapter 21

The public C-API of lxml.etree

As of version 1.1, lxml.etree provides a public C-API. This allows external C extensions to efficiently access
public functions and classes of lxml, without going through the Python API.

The API is described in the file etreepublic.pxd, which is directly c-importable by extension modules implemented
in Pyrex or Cython.

Writing external modules in Cython

This is the easiest way of extending lxml at the C level. A Cython (or Pyrex) module should start like this:

My Cython extension

import the public functions and classes of lxml.etree
cimport etreepublic as cetree

import the lxml.etree module in Python
cdef object etree
from lxml import etree

initialize the access to the C-API of lxml.etree
cetree.import_lxml__etree()

From this line on, you can access all public functions of lxml.etree from the cetree namespace like this:

build a tag name from namespace and element name
py_tag = cetree.namespacedNameFromNsName("http://some/url", "myelement")

Public lxml classes are easily subclassed. For example, to implement and set a new default element class, you can
write Cython code like the following:

from etreepublic cimport ElementBase
cdef class NewElementClass(ElementBase):

def set_value(self, myval):
self.set("my_attribute", myval)

etree.set_element_class_lookup(
etree.DefaultElementClassLookup(element=NewElementClass))

182

https://github.com/lxml/lxml/blob/master/src/lxml/include/etreepublic.pxd
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
http://cython.org
http://cython.org
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/

Writing external modules in C

Writing external modules in C

If you really feel like it, you can also interface with lxml.etree straight from C code. All you have to do is include
the header file for the public API, import the lxml.etree module and then call the import function:

/* My C extension */

/* common includes */
#include "Python.h"
#include "stdio.h"
#include "string.h"
#include "stdarg.h"
#include "libxml/xmlversion.h"
#include "libxml/encoding.h"
#include "libxml/hash.h"
#include "libxml/tree.h"
#include "libxml/xmlIO.h"
#include "libxml/xmlsave.h"
#include "libxml/globals.h"
#include "libxml/xmlstring.h"

/* lxml.etree specific includes */
#include "lxml-version.h"
#include "etree_defs.h"
#include "etree.h"

/* setup code */
import_lxml__etree()

Note that including etree.h does not automatically include the header files it requires. Note also that the above
list of common includes may not be sufficient.

183

Part IV

Developing lxml

184

Chapter 22

How to build lxml from source

To build lxml from source, you need libxml2 and libxslt properly installed, including the header files. These are
likely shipped in separate -dev or -devel packages like libxml2-dev, which you must install before trying
to build lxml.

Cython

The lxml.etree and lxml.objectify modules are written in Cython. Since we distribute the Cython-generated .c
files with lxml releases, however, you do not need Cython to build lxml from the normal release sources. We even
encourage you to not install Cython for a normal release build, as the generated C code can vary quite heavily
between Cython versions, which may or may not generate correct code for lxml. The pre-generated release sources
were tested and therefore are known to work.

So, if you want a reliable build of lxml, we suggest to a) use a source release of lxml and b) disable or uninstall
Cython for the build.

Only if you are interested in building lxml from a checkout of the developer sources (e.g. to test a bug fix that has
not been release yet) or if you want to be an lxml developer, then you do need a working Cython installation. You
can use pip to install it:

pip install -r requirements.txt

https://github.com/lxml/lxml/blob/master/requirements.txt

lxml currently requires at least Cython 0.20, later release versions should work as well.

Github, git and hg

The lxml package is developed in a repository on Github using Mercurial and the hg-git plugin. You can retrieve
the current developer version using:

hg clone git://github.com/lxml/lxml.git lxml

This will create a directory lxml and download the source into it, including the complete development history.
Don’t be afraid, the download is fairly quick. You can also browse the lxml repository through the web.

185

http://cython.org
http://pypi.python.org/pypi/pip
https://github.com/lxml/lxml/blob/master/requirements.txt
https://github.com/lxml/
http://mercurial.selenic.com/
http://hg-git.github.com/
https://github.com/lxml/lxml

Running the tests and reporting errors

Building the sources

Clone the source repository as described above (or download the source tar-ball and unpack it) and then type:

python setup.py build

or:

python setup.py bdist_egg # requires ’setuptools’ or ’distribute’

To (re-)build the C sources with Cython, you must additionally pass the option --with-cython:

python setup.py build --with-cython

If you want to test lxml from the source directory, it is better to build it in-place like this:

python setup.py build_ext -i --with-cython

or, in Unix-like environments:

make inplace

To speed up the build in test environments (e.g. on a continuous integration server), set the CFLAGS environment
variable to disable C compiler optimisations (e.g. “-O0” for gcc, that’s minus-oh-zero), for example:

CFLAGS="-O0" make inplace

If you get errors about missing header files (e.g. Python.h or libxml/xmlversion.h) then you need to
make sure the development packages of Python, libxml2 and libxslt are properly installed. On Linux distributions,
they are usually called something like libxml2-dev or libxslt-devel. If these packages were installed in
non-standard places, try passing the following option to setup.py to make sure the right config is found:

python setup.py build --with-xslt-config=/path/to/xslt-config

If this doesn’t help, you may have to add the location of the header files to the include path like:

python setup.py build_ext -i -I /usr/include/libxml2

where the file is in /usr/include/libxml2/libxml/xmlversion.h

To use lxml.etree in-place, you can place lxml’s src directory on your Python module search path (PYTHON-
PATH) and then import lxml.etree to play with it:

cd lxml
PYTHONPATH=src python
Python 2.7.2
Type "help", "copyright", "credits" or "license" for more information.
>>> from lxml import etree
>>>

To make sure everything gets recompiled cleanly after changes, you can run make clean or delete the file
src/lxml/etree.c.

Running the tests and reporting errors

The source distribution (tgz) and the source repository contain a test suite for lxml. You can run it from the
top-level directory:

python test.py

186

https://github.com/lxml/lxml/tarball/master

Building lxml on MacOS-X

Note that the test script only tests the in-place build (see distutils building above), as it searches the src directory.
You can use the following one-step command to trigger an in-place build and test it:

make test

This also runs the ElementTree and cElementTree compatibility tests. To call them separately, make sure you have
lxml on your PYTHONPATH first, then run:

python selftest.py

and:

python selftest2.py

If the tests give failures, errors, or worse, segmentation faults, we’d really like to know. Please contact us on the
mailing list, and please specify the version of lxml, libxml2, libxslt and Python you were using, as well as your
operating system type (Linux, Windows, MacOS-X, ...).

Building an egg or wheel

This is the procedure to make an lxml egg or wheel for your platform. It assumes that you have setuptools or
distribute installed, as well as the wheel package.

First, download the lxml-x.y.tar.gz release. This contains the pregenerated C files so that you can be sure you build
exactly from the release sources. Unpack them and cd into the resulting directory. Then, to build a wheel, simply
run the command

python setup.py bdist_wheel

or, to build a statically linked wheel with all of libxml2, libxslt and friends compiled in, run

python setup.py bdist_wheel --static-deps

The resulting .whl file will be written into the dist directory.

To build an egg file, run

python setup.py build_egg

If you are on a Unix-like platform, you can first build the extension modules using

python setup.py build

and then cd into the directory build/lib.your.platform to call strip on any .so file you find there.
This reduces the size of the binary distribution considerably. Then, from the package root directory, call

python setup.py bdist_egg

This will quickly package the pre-built packages into an egg file and drop it into the dist directory.

Building lxml on MacOS-X

Apple regularly ships new system releases with horribly outdated system libraries. This is specifically the case for
libxml2 and libxslt, where the system provided versions used to be too old to even build lxml for a long time.

While the Unix environment in MacOS-X makes it relatively easy to install Unix/Linux style package management
tools and new software, it actually seems to be hard to get libraries set up for exclusive usage that MacOS-X ships

187

http://lxml.de/mailinglist/
http://wheel.readthedocs.org/en/latest/

Static linking on Windows

in an older version. Alternative distributions (like macports) install their libraries in addition to the system libraries,
but the compiler and the runtime loader on MacOS still sees the system libraries before the new libraries. This can
lead to undebuggable crashes where the newer library seems to be loaded but the older system library is used.

Apple discourages static building against libraries, which would help working around this problem. Apple does
not ship static library binaries with its system and several package management systems follow this decision.
Therefore, building static binaries requires building the dependencies first. The setup.py script does this auto-
matically when you call it like this:

python setup.py build --static-deps

This will download and build the latest versions of libxml2 and libxslt from the official FTP download site. If
you want to use specific versions, or want to prevent any online access, you can download both tar.gz release
files yourself, place them into a subdirectory libs in the lxml distribution, and call setup.py with the desired
target versions like this:

python setup.py build --static-deps \
--libxml2-version=2.9.1 \
--libxslt-version=1.1.28 \

sudo python setup.py install

Instead of build, you can use any target, like bdist_egg if you want to use setuptools to build an installable
egg, or bdist_wheel for a wheel package.

Note that this also works with pip. Since you can’t pass command line options in this case, you have to use an
environment variable instead:

STATIC_DEPS=true pip install lxml

To install the package into the system Python package directory, run the installation with “sudo”:

STATIC_DEPS=true sudo pip install lxml

The STATICBUILD environment variable is handled equivalently to the STATIC_DEPS variable, but is used by
some other extension packages, too.

If you decide to do a non-static build, you may also have to install the command line tools in addition to the XCode
build environment. They are available as a restricted download from here:

https://developer.apple.com/downloads/index.action?=command%20line%20tools#

Without them, the compiler may not find the necessary header files of the XML libraries, according to the second
comment in this ticket:

https://bugs.launchpad.net/lxml/+bug/1244094

Static linking on Windows

Most operating systems have proper package management that makes installing current versions of libxml2 and
libxslt easy. The most famous exception is Microsoft Windows, which entirely lacks these capabilities. To work
around the limits of this platform, lxml’s installation can download pre-built packages of the dependencies and
build statically against them. Assuming you have a proper C compiler setup to build Python extensions, this should
work:

python setup.py bdist_wininst --static-deps

It should create a windows installer in the pkg directory.

188

http://pypi.python.org/pypi/pip
https://developer.apple.com/downloads/index.action
https://bugs.launchpad.net/lxml/+bug/1244094

Building Debian packages from SVN sources

Building Debian packages from SVN sources

Andreas Pakulat proposed the following approach.

∙ apt-get source lxml

∙ remove the unpacked directory

∙ tar.gz the lxml SVN version and replace the orig.tar.gz that lies in the directory

∙ check md5sum of created tar.gz file and place new sum and size in dsc file

∙ do dpkg-source -x lxml-[VERSION].dsc and cd into the newly created directory

∙ run dch -i and add a comment like “use trunk version”, this will increase the debian version number so
apt/dpkg won’t get confused

∙ run dpkg-buildpackage -rfakeroot -us -uc to build the package

In case dpkg-buildpackage tells you that some dependecies are missing, you can either install them manually
or run apt-get build-dep lxml.

That will give you .deb packages in the parent directory which can be installed using dpkg -i.

189

http://thread.gmane.org/gmane.comp.python.lxml.devel/1239/focus=1249

Chapter 23

How to read the source of lxml

Author: Stefan Behnel

This document describes how to read the source code of lxml and how to start working on it. You might also be
interested in the companion document that describes how to build lxml from sources.

What is Cython?

Cython is the language that lxml is written in. It is a very Python-like language that was specifically designed for
writing Python extension modules.

The reason why Cython (or actually its predecessor Pyrex at the time) was chosen as an implementation language
for lxml, is that it makes it very easy to interface with both the Python world and external C code. Cython generates
all the necessary glue code for the Python API, including Python types, calling conventions and reference counting.
On the other side of the table, calling into C code is not more than declaring the signature of the function and maybe
some variables as being C types, pointers or structs, and then calling it. The rest of the code is just plain Python
code.

The Cython language is so close to Python that the Cython compiler can actually compile many, many Python pro-
grams to C without major modifications. But the real speed gains of a C compilation come from type annotations
that were added to the language and that allow Cython to generate very efficient C code.

Even if you are not familiar with Cython, you should keep in mind that a slow implementation of a feature is better
than none. So, if you want to contribute and have an idea what code you want to write, feel free to start with a pure
Python implementation. Chances are, if you get the change officially accepted and integrated, others will take the
time to optimise it so that it runs fast in Cython.

Where to start?

First of all, read how to build lxml from sources to learn how to retrieve the source code from the Subversion
repository and how to build it. The source code lives in the subdirectory src of the checkout.

The main extension modules in lxml are lxml.etree and lxml.objectify. All main modules have the file
extension .pyx, which shows the descendence from Pyrex. As usual in Python, the main files start with a short
description and a couple of imports. Cython distinguishes between the run-time import statement (as known
from Python) and the compile-time cimport statement, which imports C declarations, either from external
libraries or from other Cython modules.

190

http://lxml.de/
http://cython.org/
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/

Concepts lxml.etree

Concepts

lxml’s tree API is based on proxy objects. That means, every Element object (or rather _Element object) is a
proxy for a libxml2 node structure. The class declaration is (mainly):

cdef class _Element:
cdef _Document _doc
cdef xmlNode* _c_node

It is a naming convention that C variables and C level class members that are passed into libxml2 start with a
prefixed c_ (commonly libxml2 struct pointers), and that C level class members are prefixed with an underscore.
So you will often see names like c_doc for an xmlDoc* variable (or c_node for an xmlNode*), or the above
_c_node for a class member that points to an xmlNode struct (or _c_doc for an xmlDoc*).

It is important to know that every proxy in lxml has a factory function that properly sets up C level members.
Proxy objects must never be instantiated outside of that factory. For example, to instantiate an _Element object or
its subclasses, you must always call its factory function:

cdef xmlNode* c_node
cdef _Document doc
cdef _Element element
...
element = _elementFactory(doc, c_node)

A good place to see how this factory is used are the Element methods getparent(), getnext() and getprevious().

The documentation

An important part of lxml is the documentation that lives in the doc directory. It describes a large part of the API
and comprises a lot of example code in the form of doctests.

The documentation is written in the ReStructured Text format, a very powerful text markup language that looks
almost like plain text. It is part of the docutils package.

The project web site of lxml is completely generated from these text documents. Even the side menu is just
collected from the table of contents that the ReST processor writes into each HTML page. Obviously, we use lxml
for this.

The easiest way to generate the HTML pages is by calling:

make html

This will call the script doc/mkhtml.py to run the ReST processor on the files. After generating an HTML
page the script parses it back in to build the side menu, and injects the complete menu into each page at the very
end.

Running the make command will also generate the API documentation if you have epydoc installed. The epydoc
package will import and introspect the extension modules and also introspect and parse the Python modules of
lxml. The aggregated information will then be written out into an HTML documentation site.

lxml.etree

The main module, lxml.etree, is in the file lxml.etree.pyx. It implements the main functions and types of the
ElementTree API, as well as all the factory functions for proxies. It is the best place to start if you want to find out
how a specific feature is implemented.

191

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/
http://lxml.de/
http://epydoc.sourceforge.net/
https://github.com/lxml/lxml/blob/master/src/lxml/lxml.etree.pyx

lxml.etree

At the very end of the file, it contains a series of include statements that merge the rest of the implementation
into the generated C code. Yes, you read right: no importing, no source file namespacing, just plain good old
include and a huge C code result of more than 100,000 lines that we throw right into the C compiler.

The main include files are:

apihelpers.pxi Private C helper functions. Except for the factory functions, most of the little functions that are
used all over the place are defined here. This includes things like reading out the text content of a libxml2
tree node, checking input from the API level, creating a new Element node or handling attribute values. If
you want to work on the lxml code, you should keep these functions in the back of your head, as they will
definitely make your life easier.

classlookup.pxi Element class lookup mechanisms. The main API and engines for those who want to define
custom Element classes and inject them into lxml.

docloader.pxi Support for custom document loaders. Base class and registry for custom document resolvers.

extensions.pxi Infrastructure for extension functions in XPath/XSLT, including XPath value conversion and func-
tion registration.

iterparse.pxi Incremental XML parsing. An iterator class that builds iterparse events while parsing.

nsclasses.pxi Namespace implementation and registry. The registry and engine for Element classes that use the
ElementNamespaceClassLookup scheme.

parser.pxi Parsers for XML and HTML. This is the main parser engine. It’s the reason why you can parse
a document from various sources in two lines of Python code. It’s definitely not the right place to start
reading lxml’s soure code.

parsertarget.pxi An ElementTree compatible parser target implementation based on the SAX2 interface of
libxml2.

proxy.pxi Very low-level functions for memory allocation/deallocation and Element proxy handling. Ignoring
this for the beginning will safe your head from exploding.

public-api.pxi The set of C functions that are exported to other extension modules at the C level. For example,
lxml.objectify makes use of these. See the C-level API documentation.

readonlytree.pxi A separate read-only implementation of the Element API. This is used in places where non-
intrusive access to a tree is required, such as the PythonElementClassLookup or XSLT extension
elements.

saxparser.pxi SAX-like parser interfaces as known from ElementTree’s TreeBuilder.

serializer.pxi XML output functions. Basically everything that creates byte sequences from XML trees.

xinclude.pxi XInclude support.

xmlerror.pxi Error log handling. All error messages that libxml2 generates internally walk through the code in
this file to end up in lxml’s Python level error logs.

At the end of the file, you will find a long list of named error codes. It is generated from the libxml2 HTML
documentation (using lxml, of course). See the script update-error-constants.py for this.

xmlid.pxi XMLID and IDDict, a dictionary-like way to find Elements by their XML-ID attribute.

xpath.pxi XPath evaluators.

xslt.pxi XSL transformations, including the XSLT class, document lookup handling and access control.

The different schema languages (DTD, RelaxNG, XML Schema and Schematron) are implemented in the follow-

192

lxml.html

ing include files:

∙ dtd.pxi

∙ relaxng.pxi

∙ schematron.pxi

∙ xmlschema.pxi

Python modules

The lxml package also contains a number of pure Python modules:

builder.py The E-factory and the ElementBuilder class. These provide a simple interface to XML tree generation.

cssselect.py A CSS selector implementation based on XPath. The main class is called CSSSelector.

doctestcompare.py A relaxed comparison scheme for XML/HTML markup in doctest.

ElementInclude.py XInclude-like document inclusion, compatible with ElementTree.

_elementpath.py XPath-like path language, compatible with ElementTree.

sax.py SAX2 compatible interfaces to copy lxml trees from/to SAX compatible tools.

usedoctest.py Wrapper module for doctestcompare.py that simplifies its usage from inside a doctest.

lxml.objectify

A Cython implemented extension module that uses the public C-API of lxml.etree. It provides a Python object-like
interface to XML trees. The implementation resides in the file lxml.objectify.pyx.

lxml.html

A specialised toolkit for HTML handling, based on lxml.etree. This is implemented in pure Python.

193

https://github.com/lxml/lxml/blob/master/src/lxml/lxml.objectify.pyx

Chapter 24

Credits

Main contributors

Stefan Behnel main developer and maintainer

Martijn Faassen creator of lxml and initial main developer

Ian Bicking creator and maintainer of lxml.html

Holger Joukl ISO-Schematron support, development on lxml.objectify, bug reports, feedback

Simon Sapin external maintenance and development of the cssselect package

Marc-Antoine Parent XPath extension function help and patches

Olivier Grisel improved (c)ElementTree compatibility patches, website improvements.

Kasimier Buchcik help with specs and libxml2

Florian Wagner help with copy.deepcopy support, bug reporting

Emil Kroymann help with encoding support, bug reporting

Paul Everitt bug reporting, feedback on API design

Victor Ng Discussions on memory management strategies, vlibxml2

Robert Kern feedback on API design

Andreas Pakulat rpath linking support, doc improvements

David Sankel building statically on Windows

Marcin Kasperski PDF documentation generation

Sidnei da Silva official MS Windows builds

Pascal Oberndörfer official Mac-OS builds

... and lots of other people who contributed to lxml by reporting bugs, discussing its functionality or blaming the
docs for the bugs in their code. Thank you all, user feedback and discussions form a very important part of an
Open Source project!

194

Special thanks goes to:

Special thanks goes to:

∙ Daniel Veillard and the libxml2 project for a great XML library.

∙ Fredrik Lundh for ElementTree, its API, and the competition through cElementTree.

∙ Greg Ewing (Pyrex) and Robert Bradshaw et al. (Cython) for the binding technology.

∙ Jonathan Stoppani for hosting the new mailing list on lxml.de.

∙ the codespeak crew, in particular Philipp von Weitershausen and Holger Krekel for originally hosting lxml
on codespeak.net

195

Appendix A

Changes

3.4.0 (2014-09-10)

Features added

∙ xmlfile(buffered=False) disables output buffering and flushes the content after each API operation
(starting/ending element blocks or writes). A new method xf.flush() can alternatively be used to
explicitly flush the output.

∙ lxml.html.document_fromstring has a new option ensure_head_body=True which will
add an empty head and/or body element to the result document if missing.

∙ lxml.html.iterlinks now returns links inside meta refresh tags.

∙ New XMLParser option collect_ids=False to disable ID hash table creation. This can substantially
speed up parsing of documents with many different IDs that are not used.

∙ The parser uses per-document hash tables for XML IDs. This reduces the load of the global parser dict and
speeds up parsing for documents with many different IDs.

∙ ElementTree.getelementpath(element) returns a structural ElementPath expression for the
given element, which can be used for lookups later.

∙ xmlfile() accepts a new argument close=True to close file(-like) objects after writing to them. Be-
fore, xmlfile() only closed the file if it had opened it internally.

∙ Allow “bytearray” type for ASCII text input.

Bugs fixed

Other changes

∙ LP#400588: decoding errors have become hard errors even in recovery mode. Previously, they could lead
to an internal tree representation in a mixed encoding state, which lead to very late errors or even silently
incorrect behaviour during tree traversal or serialisation.

∙ Requires Python 2.6, 2.7, 3.2 or later. No longer supports Python 2.4, 2.5 and 3.1, use lxml 3.3.x for those.

∙ Requires libxml2 2.7.0 or later and libxslt 1.1.23 or later, use lxml 3.3.x with older versions.

196

3.3.3 (2014-03-04)

3.3.6 (2014-08-28)

Bugs fixed

∙ Prevent tree cycle creation when adding Elements as siblings.

∙ LP#1361948: crash when deallocating Element siblings without parent.

∙ LP#1354652: crash when traversing internally loaded documents in XSLT extension functions.

3.3.5 (2014-04-18)

Bugs fixed

∙ HTML cleaning could fail to strip javascript links that mix control characters into the link scheme.

3.3.4 (2014-04-03)

Features added

∙ Source line numbers above 65535 are available on Elements when using libxml2 2.9 or later.

Bugs fixed

∙ lxml.html.fragment_fromstring() failed for bytes input in Py3.

Other changes

3.3.3 (2014-03-04)

Bugs fixed

∙ LP#1287118: Crash when using Element subtypes with __slots__.

Other changes

∙ The internal classes _LogEntry and _Attrib can no longer be subclassed from Python code.

197

3.3.0 (2014-01-26)

3.3.2 (2014-02-26)

Bugs fixed

∙ The properties resolvers and version, as well as the methods set_element_class_lookup()
and makeelement(), were lost from iterparse objects in 3.3.0.

∙ LP#1222132: instances of XMLSchema, Schematron and RelaxNG did not clear their local error_log
before running a validation.

∙ LP#1238500: lxml.doctestcompare mixed up “expected” and “actual” in attribute values.

∙ Some file I/O tests were failing in MS-Windows due to non-portable temp file usage. Initial patch by Gabi
Davar.

∙ LP#910014: duplicate IDs in a document were not reported by DTD validation.

∙ LP#1185332: tostring(method="html") did not use HTML serialisation semantics for trailing tail
text. Initial patch by Sylvain Viollon.

∙ LP#1281139: .attrib value of Comments lost its mutation methods in 3.3.0. Even though it is empty
and immutable, it should still provide the same interface as that returned for Elements.

3.3.1 (2014-02-12)

Features added

Bugs fixed

∙ LP#1014290: HTML documents parsed with parser.feed() failed to find elements during tag iteration.

∙ LP#1273709: Building in PyPy failed due to missing support for PyUnicode_Compare() and PyByteArray_*()
in PyPy’s C-API.

∙ LP#1274413: Compilation in MSVC failed due to missing “stdint.h” standard header file.

∙ LP#1274118: iterparse() failed to parse BOM prefixed files.

Other changes

3.3.0 (2014-01-26)

Features added

Bugs fixed

∙ The heuristic that distinguishes file paths from URLs was tightened to produce less false negatives.

198

3.3.0beta4 (2014-01-12)

Other changes

3.3.0beta5 (2014-01-18)

Features added

∙ The PEP 393 unicode parsing support gained a fallback for wchar strings which might still be somewhat
common on Windows systems.

Bugs fixed

∙ Several error handling problems were fixed throughout the code base that could previously lead to excep-
tions being silently swallowed or not properly reported.

∙ The C-API function appendChild() is now deprecated as it does not propagate exceptions (its return
type is void). The new function appendChildToElement() was added as a safe replacement.

∙ Passing a string into fromstringlist() raises an exception instead of parsing the string character by
character.

Other changes

∙ Document cleanup code was simplified using the new GC features in Cython 0.20.

3.3.0beta4 (2014-01-12)

Features added

Bugs fixed

∙ The (empty) value returned by the attrib property of Entity and Comment objects was mutable.

∙ Element class lookup wasn’t available for the new pull parsers or when using a custom parser target.

∙ Setting Element attributes on instantiation with both the attrib argument and keyword arguments could
modify the mapping passed as attrib.

∙ LP#1266171: DTDs instantiated from internal/external subsets (i.e. through the docinfo property) lost their
attribute declarations.

Other changes

∙ Built with Cython 0.20pre (gitrev 012ae82eb) to prepare support for Python 3.4.

199

3.3.0beta1 (2013-12-12)

3.3.0beta3 (2014-01-02)

Features added

∙ Unicode string parsing was optimised for Python 3.3 (PEP 393).

Bugs fixed

∙ HTML parsing of Unicode strings could misdecode the input on some platforms.

∙ Crash in xmlfile() when closing open elements out of order in an error case.

Other changes

3.3.0beta2 (2013-12-20)

Features added

∙ iterparse() supports the recover option.

Bugs fixed

∙ Crash in iterparse() for HTML parsing.

∙ Crash in target parsing with attributes.

Other changes

∙ The safety check in the read-only tree implementation (e.g. used by PythonElementClassLookup)
raises a more appropriate ReferenceError for illegal access after tree disposal instead of an AssertionError.
This should only impact test code that specifically checks the original behaviour.

3.3.0beta1 (2013-12-12)

Features added

∙ New option handle_failures in make_links_absolute() and resolve_base_href() (lxml.html)
that enables ignoring or discarding links that fail to parse as URLs.

∙ New parser classes XMLPullParser and HTMLPullParser for incremental parsing, as implemented
for ElementTree in Python 3.4.

∙ iterparse() enables recovery mode by default for HTML parsing (html=True).

200

3.2.4 (2013-11-07)

Bugs fixed

∙ LP#1255132: crash when trying to run validation over non-Element (e.g. comment or PI).

∙ Error messages in the log and in exception messages that originated from libxml2 could accidentally be
picked up from preceding warnings instead of the actual error.

∙ The ElementMaker in lxml.objectify did not accept a dict as argument for adding attributes to the element
it’s building. This works as in lxml.builder now.

∙ LP#1228881: repr(XSLTAccessControl) failed in Python 3.

∙ Raise ValueError when trying to append an Element to itself or to one of its own descendants, instead
of running into an infinite loop.

∙ LP#1206077: htmldiff discarded whitespace from the output.

∙ Compressed plain-text serialisation to file-like objects was broken.

∙ lxml.html.formfill: Fix textarea form filling. The textarea used to be cleared before the new content was set,
which removed the name attribute.

Other changes

∙ Some basic API classes use freelists internally for faster instantiation. This can speed up some iterparse()
scenarios, for example.

∙ iterparse() was rewritten to use the new *PullParser classes internally instead of being a parser
itself.

3.2.5 (2014-01-02)

Features added

Bugs fixed

∙ Crash in xmlfile() when closing open elements out of order in an error case.

∙ Crash in target parsing with attributes.

∙ LP#1255132: crash when trying to run validation over non-Element (e.g. comment or PI).

Other changes

3.2.4 (2013-11-07)

Features added

Bugs fixed

∙ Memory leak when creating an XPath evaluator in a thread.

201

3.2.1 (2013-05-11)

∙ LP#1228881: repr(XSLTAccessControl) failed in Python 3.

∙ Raise ValueError when trying to append an Element to itself or to one of its own descendants.

∙ LP#1206077: htmldiff discarded whitespace from the output.

∙ Compressed plain-text serialisation to file-like objects was broken.

Other changes

3.2.3 (2013-07-28)

Bugs fixed

∙ Fix support for Python 2.4 which was lost in 3.2.2.

3.2.2 (2013-07-28)

Features added

Bugs fixed

∙ LP#1185701: spurious XMLSyntaxError after finishing iterparse().

∙ Crash in lxml.objectify during xsi annotation.

Other changes

∙ Return values of user provided element class lookup methods are now validated against the type of the XML
node they represent to prevent API class mismatches.

3.2.1 (2013-05-11)

Features added

∙ The methods apply_templates() and process_children() of XSLT extension elements have
gained two new boolean options elements_only and remove_blank_text that discard either all
strings or whitespace-only strings from the result list.

Bugs fixed

∙ When moving Elements to another tree, the namespace cleanup mechanism no longer drops namespace
prefixes from attributes for which it finds a default namespace declaration, to prevent them from appearing
as unnamespaced attributes after serialisation.

∙ Returning non-type objects from a custom class lookup method could lead to a crash.

202

3.1.2 (2013-04-12)

∙ Instantiating and using subtypes of Comments and ProcessingInstructions crashed.

Other changes

3.2.0 (2013-04-28)

Features added

Bugs fixed

∙ LP#690319: Leading whitespace could change the behaviour of the string parsing functions in lxml.html.

∙ LP#599318: The string parsing functions in lxml.html are more robust in the face of uncommon HTML
content like framesets or missing body tags. Patch by Stefan Seelmann.

∙ LP#712941: I/O errors while trying to access files with paths that contain non-ASCII characters could raise
UnicodeDecodeError instead of properly reporting the IOError.

∙ LP#673205: Parsing from in-memory strings disabled network access in the default parser and made sub-
sequent attempts to parse from a URL fail.

∙ LP#971754: lxml.html.clean appends ’nofollow’ to ’rel’ attributes instead of overwriting the current value.

∙ LP#715687: lxml.html.clean no longer discards scripts that are explicitly allowed by the user provided
whitelist. Patch by Christine Koppelt.

Other changes

3.1.2 (2013-04-12)

Features added

Bugs fixed

∙ LP#1136509: Passing attributes through the namespace-unaware API of the sax bridge (i.e. the handler.startElement()
method) failed with a TypeError. Patch by Mike Bayer.

∙ LP#1123074: Fix serialisation error in XSLT output when converting the result tree to a Unicode string.

∙ GH#105: Replace illegal usage of xmlBufLength() in libxml2 2.9.0 by properly exported API function
xmlBufUse().

203

3.1beta1 (2012-12-21)

Other changes

3.1.1 (2013-03-29)

Features added

Bugs fixed

∙ LP#1160386: Write access to lxml.html.FormElement.fields raised an AttributeError in Py3.

∙ Illegal memory access during cleanup in incremental xmlfile writer.

Other changes

∙ The externally useless class lxml.etree._BaseParser was removed from the module dict.

3.1.0 (2013-02-10)

Features added

∙ GH#89: lxml.html.clean allows overriding the set of attributes that it considers ’safe’. Patch by Francis
Devereux.

Bugs fixed

∙ LP#1104370: copy.copy(el.attrib) raised an exception. It now returns a copy of the attributes as
a plain Python dict.

∙ GH#95: When used with namespace prefixes, the el.find*() methods always used the first namespace
mapping that was provided for each path expression instead of using the one that was actually passed in for
the current run.

∙ LP#1092521, GH#91: Fix undefined C symbol in Python runtimes compiled without threading support.
Patch by Ulrich Seidl.

Other changes

3.1beta1 (2012-12-21)

Features added

∙ New build-time option --with-unicode-strings for Python 2 that makes the API always return
Unicode strings for names and text instead of byte strings for plain ASCII content.

∙ New incremental XML file writing API etree.xmlfile().

204

3.0.1 (2012-10-14)

∙ E factory in lxml.objectify is callable to simplify the creation of tags with non-identifier names without
having to resort to getattr().

Bugs fixed

∙ When starting from a non-namespaced element in lxml.objectify, searching for a child without explicitly
specifying a namespace incorrectly found namespaced elements with the requested local name, instead of
restricting the search to non-namespaced children.

∙ GH#85: Deprecation warnings were fixed for Python 3.x.

∙ GH#33: lxml.html.fromstring() failed to accept bytes input in Py3.

∙ LP#1080792: Static build of libxml2 2.9.0 failed due to missing file.

Other changes

∙ The externally useless class _ObjectifyElementMakerCaller was removed from the module API
of lxml.objectify.

∙ LP#1075622: lxml.builder is faster for adding text to elements with many children. Patch by Anders Ham-
marquist.

3.0.2 (2012-12-14)

Features added

Bugs fixed

∙ Fix crash during interpreter shutdown by switching to Cython 0.17.3 for building.

Other changes

3.0.1 (2012-10-14)

Features added

Bugs fixed

∙ LP#1065924: Element proxies could disappear during garbage collection in PyPy without proper cleanup.

∙ GH#71: Failure to work with libxml2 2.6.x.

∙ LP#1065139: static MacOS-X build failed in Py3.

205

3.0alpha2 (2012-08-23)

Other changes

3.0 (2012-10-08)

Features added

Bugs fixed

∙ End-of-file handling was incorrect in iterparse() when reading from a low-level C file stream and failed in
libxml2 2.9.0 due to its improved consistency checks.

Other changes

∙ The build no longer uses Cython by default unless the generated C files are missing. To use Cython, pass
the option “--with-cython”. To ignore the fatal build error when Cython is required but not available (e.g. to
run special setup.py commands that do not actually run a build), pass “--without-cython”.

3.0beta1 (2012-09-26)

Features added

∙ Python level access to (optional) libxml2 memory debugging features to simplify debugging of memory
leaks etc.

Bugs fixed

∙ Fix a memory leak in XPath by switching to Cython 0.17.1.

∙ Some tests were adapted to work with PyPy.

Other changes

∙ The code was adapted to work with the upcoming libxml2 2.9.0 release.

3.0alpha2 (2012-08-23)

Features added

∙ The .iter() method of elements now accepts tag arguments like "{*}name" to search for elements
with a given local name in any namespace. With this addition, all combinations of wildcards now work as
expected: "{ns}name", "{}name", "{*}name", "{ns}*", "{}*" and "{*}*". Note that "name"
is equivalent to "{}name", but "*" is "{*}*". The same change applies to the .getiterator(),
.itersiblings(), .iterancestors(), .iterdescendants(), .iterchildren() and .itertext()
methods;the strip_attributes(), strip_elements() and strip_tags() functions as well
as the iterparse() class. Patch by Simon Sapin.

206

3.0alpha1 (2012-07-31)

∙ C14N allows specifying the inclusive prefixes to be promoted to top-level during exclusive serialisation.

Bugs fixed

∙ Passing long Unicode strings into the feed() parser interface failed to read the entire string.

Other changes

3.0alpha1 (2012-07-31)

Features added

∙ Initial support for building in PyPy (through cpyext).

∙ DTD objects gained an API that allows read access to their declarations.

∙ xpathgrep.py gained support for parsing line-by-line (e.g. from grep output) and for surrounding the
output with a new root tag.

∙ E-factory in lxml.builder accepts subtypes of known data types (such as string subtypes) when
building elements around them.

∙ Tree iteration and iterparse() with a selective tag argument supports passing a set of tags. Tree nodes
will be returned by the iterators if they match any of the tags.

Bugs fixed

∙ The .find*() methods in lxml.objectify no longer use XPath internally, which makes them faster
in many cases (especially when short circuiting after a single or couple of elements) and fixes some be-
havioural differences compared to lxml.etree. Note that this means that they no longer support ar-
bitrary XPath expressions but only the subset that the ElementPath language supports. The previous
implementation was also redundant with the normal XPath support, which can be used as a replacement.

∙ el.find(’*’) could accidentally return a comment or processing instruction that happened to be in the
wrong spot. (Same for the other .find*() methods.)

∙ The error logging is less intrusive and avoids a global setup where possible.

∙ Fixed undefined names in html5lib parser.

∙ xpathgrep.py did not work in Python 3.

∙ Element.attrib.update() did not accept an attrib of another Element as parameter.

∙ For subtypes of ElementBase that make the .text or .tail properties immutable (as in objectify,
for example), inserting text when creating Elements through the E-Factory feature of the class constructor
would fail with an exception, stating that the text cannot be modified.

Other changes

∙ The code base was overhauled to properly use ’const’ where the API of libxml2 and libxslt requests it. This
also has an impact on the public C-API of lxml itself, as defined in etreepublic.pxd, as well as the

207

2.3.5 (2012-07-31)

provided declarations in the lxml/includes/ directory. Code that uses these declarations may have to
be adapted. On the plus side, this fixes several C compiler warnings, also for user code, thus making it
easier to spot real problems again.

∙ The functionality of “lxml.cssselect” was moved into a separate PyPI package called “cssselect”. To con-
tinue using it, you must install that package separately. The “lxml.cssselect” module is still available and
provides the same interface, provided the “cssselect” package can be imported at runtime.

∙ Element attributes passed in as an attrib dict or as keyword arguments are now sorted by (namespaced)
name before being created to make their order predictable for serialisation and iteration. Note that adding
or deleting attributes afterwards does not take that order into account, i.e. setting a new attribute appends it
after the existing ones.

∙ Several classes that are for internal use only were removed from the lxml.etreemodule dict: _InputDocument,
_ResolverRegistry, _ResolverContext, _BaseContext, _ExsltRegExp, _IterparseContext,
_TempStore, _ExceptionContext, __ContentOnlyElement, _AttribIterator, _NamespaceRegistry,
_ClassNamespaceRegistry, _FunctionNamespaceRegistry, _XPathFunctionNamespaceRegistry,
_ParserDictionaryContext, _FileReaderContext, _ParserContext, _PythonSaxParserTarget,
_TargetParserContext, _ReadOnlyProxy, _ReadOnlyPIProxy, _ReadOnlyEntityProxy,
_ReadOnlyElementProxy, _OpaqueNodeWrapper, _OpaqueDocumentWrapper, _ModifyContentOnlyProxy,
_ModifyContentOnlyPIProxy, _ModifyContentOnlyEntityProxy, _AppendOnlyElementProxy,
_SaxParserContext, _FilelikeWriter, _ParserSchemaValidationContext, _XPathContext,
_XSLTResolverContext, _XSLTContext, _XSLTQuotedStringParam

∙ Several internal classes can no longer be inherited from: _InputDocument, _ResolverRegistry,
_ExsltRegExp, _ElementUnicodeResult, _IterparseContext, _TempStore, _AttribIterator,
_ClassNamespaceRegistry, _XPathFunctionNamespaceRegistry, _ParserDictionaryContext,
_FileReaderContext, _PythonSaxParserTarget, _TargetParserContext, _ReadOnlyPIProxy,
_ReadOnlyEntityProxy, _OpaqueDocumentWrapper, _ModifyContentOnlyPIProxy,
_ModifyContentOnlyEntityProxy, _AppendOnlyElementProxy, _FilelikeWriter,
_ParserSchemaValidationContext, _XPathContext, _XSLTResolverContext, _XSLTContext,
_XSLTQuotedStringParam, _XSLTResultTree, _XSLTProcessingInstruction

2.3.6 (2012-09-28)

Features added

Bugs fixed

∙ Passing long Unicode strings into the feed() parser interface failed to read the entire string.

Other changes

2.3.5 (2012-07-31)

Features added

Bugs fixed

∙ Crash when merging text nodes in element.remove().

208

2.3.2 (2011-11-11)

∙ Crash in sax/target parser when reporting empty doctype.

Other changes

2.3.4 (2012-03-26)

Features added

Bugs fixed

∙ Crash when building an nsmap (Element property) with empty namespace URIs.

∙ Crash due to race condition when errors (or user messages) occur during threaded XSLT processing.

∙ XSLT stylesheet compilation could ignore compilation errors.

Other changes

2.3.3 (2012-01-04)

Features added

∙ lxml.html.tostring() gained new serialisation options with_tail and doctype.

Bugs fixed

∙ Fixed a crash when using iterparse() for HTML parsing and requesting start events.

∙ Fixed parsing of more selectors in cssselect. Whitespace before pseudo-elements and pseudo-classes is
significant as it is a descendant combinator. “E :pseudo” should parse the same as “E *:pseudo”, not
“E:pseudo”. Patch by Simon Sapin.

∙ lxml.html.diff no longer raises an exception when hitting ’img’ tags without ’src’ attribute.

Other changes

2.3.2 (2011-11-11)

Features added

∙ lxml.objectify.deannotate() has a new boolean option cleanup_namespaces to remove
the objectify namespace declarations (and generally clean up the namespace declarations) after removing
the type annotations.

∙ lxml.objectify gained its own SubElement() function as a copy of etree.SubElement to
avoid an otherwise redundant import of lxml.etree on the user side.

209

2.3.1 (2011-09-25)

Bugs fixed

∙ Fixed the “descendant” bug in cssselect a second time (after a first fix in lxml 2.3.1). The previous change
resulted in a serious performance regression for the XPath based evaluation of the translated expression.
Note that this breaks the usage of some of the generated XPath expressions as XSLT location paths that
previously worked in 2.3.1.

∙ Fixed parsing of some selectors in cssselect. Whitespace after combinators “>”, “+” and “~” is now correctly
ignored. Previously is was parsed as a descendant combinator. For example, “div> .foo” was parsed the
same as “div>* .foo” instead of “div>.foo”. Patch by Simon Sapin.

Other changes

2.3.1 (2011-09-25)

Features added

∙ New option kill_tags in lxml.html.clean to remove specific tags and their content (i.e. their
whole subtree).

∙ pi.get() and pi.attrib on processing instructions to parse pseudo-attributes from the text content of
processing instructions.

∙ lxml.get_include() returns a list of include paths that can be used to compile external C code against
lxml.etree. This is specifically required for statically linked lxml builds when code needs to compile against
the exact same header file versions as lxml itself.

∙ Resolver.resolve_file() takes an additional option close_file that configures if the file(-like)
object will be closed after reading or not. By default, the file will be closed, as the user is not expected to
keep a reference to it.

Bugs fixed

∙ HTML cleaning didn’t remove ’data:’ links.

∙ The html5lib parser integration now uses the ’official’ implementation in html5lib itself, which makes it
work with newer releases of the library.

∙ In lxml.sax, endElementNS() could incorrectly reject a plain tag name when the corresponding start
event inferred the same plain tag name to be in the default namespace.

∙ When an open file-like object is passed into parse() or iterparse(), the parser will no longer close
it after use. This reverts a change in lxml 2.3 where all files would be closed. It is the users responsibility to
properly close the file(-like) object, also in error cases.

∙ Assertion error in lxml.html.cleaner when discarding top-level elements.

∙ In lxml.cssselect, use the xpath ’A//B’ (short for ’A/descendant-or-self::node()/B’) instead of ’A/descendant::B’
for the css descendant selector (’A B’). This makes a few edge cases like "div *:last-child" consis-
tent with the selector behavior in WebKit and Firefox, and makes more css expressions valid location paths
(for use in xsl:template match).

∙ In lxml.html, non-selected <option> tags no longer show up in the collected form values.

210

2.3beta1 (2010-09-06)

∙ Adding/removing <option> values to/from a multiple select form field properly selects them and unse-
lects them.

Other changes

∙ Static builds can specify the download directory with the --download-dir option.

2.3 (2011-02-06)

Features added

∙ When looking for children, lxml.objectify takes ’{}tag’ as meaning an empty namespace, as opposed
to the parent namespace.

Bugs fixed

∙ When finished reading from a file-like object, the parser immediately calls its .close() method.

∙ When finished parsing, iterparse() immediately closes the input file.

∙ Work-around for libxml2 bug that can leave the HTML parser in a non-functional state after parsing a
severly broken document (fixed in libxml2 2.7.8).

∙ marque tag in HTML cleanup code is correctly named marquee.

Other changes

∙ Some public functions in the Cython-level C-API have more explicit return types.

2.3beta1 (2010-09-06)

Features added

Bugs fixed

∙ Crash in newer libxml2 versions when moving elements between documents that had attributes on replaced
XInclude nodes.

∙ XMLID() function was missing the optional parser and base_url parameters.

∙ Searching for wildcard tags in iterparse() was broken in Py3.

∙ lxml.html.open_in_browser() didn’t work in Python 3 due to the use of os.tempnam. It now takes
an optional ’encoding’ parameter.

211

2.3alpha1 (2010-06-19)

Other changes

2.3alpha2 (2010-07-24)

Features added

Bugs fixed

∙ Crash in XSLT when generating text-only result documents with a stylesheet created in a different thread.

Other changes

∙ repr() of Element objects shows the hex ID with leading 0x (following ElementTree 1.3).

2.3alpha1 (2010-06-19)

Features added

∙ Keyword argument namespaces in lxml.cssselect.CSSSelector() to pass a prefix-to-namespace
mapping for the selector.

∙ New function lxml.etree.register_namespace(prefix, uri) that globally registers a names-
pace prefix for a namespace that newly created Elements in that namespace will use automatically. Follows
ElementTree 1.3.

∙ Support ’unicode’ string name as encoding parameter in tostring(), following ElementTree 1.3.

∙ Support ’c14n’ serialisation method in ElementTree.write() and tostring(), following Element-
Tree 1.3.

∙ The ElementPath expression syntax (el.find*()) was extended to match the upcoming ElementTree 1.3
that will ship in the standard library of Python 3.2/2.7. This includes extended support for predicates as well
as namespace prefixes (as known from XPath).

∙ During regular XPath evaluation, various ESXLT functions are available within their namespace when using
libxslt 1.1.26 or later.

∙ Support passing a readily configured logger instance into PyErrorLog, instead of a logger name.

∙ On serialisation, the new doctype parameter can be used to override the DOCTYPE (internal subset) of
the document.

∙ New parameter output_parent to XSLTExtension.apply_templates() to append the result-
ing content directly to an output element.

∙ XSLTExtension.process_children() to process the content of the XSLT extension element itself.

∙ ISO-Schematron support based on the de-facto Schematron reference ’skeleton implementation’.

∙ XSLT objects now take XPath object as __call__ stylesheet parameters.

∙ Enable path caching in ElementPath (el.find*()) to avoid parsing overhead.

212

2.3alpha1 (2010-06-19)

∙ Setting the value of a namespaced attribute always uses a prefixed namespace instead of the default names-
pace even if both declare the same namespace URI. This avoids serialisation problems when an attribute
from a default namespace is set on an element from a different namespace.

∙ XSLT extension elements: support for XSLT context nodes other than elements: document root, comments,
processing instructions.

∙ Support for strings (in addition to Elements) in node-sets returned by extension functions.

∙ Forms that lack an action attribute default to the base URL of the document on submit.

∙ XPath attribute result strings have an attrname property.

∙ Namespace URIs get validated against RFC 3986 at the API level (required by the XML namespace speci-
fication).

∙ Target parsers show their target object in the .target property (compatible with ElementTree).

Bugs fixed

∙ API is hardened against invalid proxy instances to prevent crashes due to incorrectly instantiated Element
instances.

∙ Prevent crash when instantiating CommentBase and friends.

∙ Export ElementTree compatible XML parser class as XMLTreeBuilder, as it is called in ET 1.2.

∙ ObjectifiedDataElements in lxml.objectify were not hashable. They now use the hash value of the underly-
ing Python value (string, number, etc.) to which they compare equal.

∙ Parsing broken fragments in lxml.html could fail if the fragment contained an orphaned closing ’</div>’
tag.

∙ Using XSLT extension elements around the root of the output document crashed.

∙ lxml.cssselect did not distinguish between x[attr="val"] and x [attr="val"] (with a
space). The latter now matches the attribute independent of the element.

∙ Rewriting multiple links inside of HTML text content could end up replacing unrelated content as replace-
ments could impact the reported position of subsequent matches. Modifications are now simplified by
letting the iterlinks() generator in lxml.html return links in reversed order if they appear inside the
same text node. Thus, replacements and link-internal modifications no longer change the position of links
reported afterwards.

∙ The .value attribute of textarea elements in lxml.html did not represent the complete raw value (in-
cluding child tags etc.). It now serialises the complete content on read and replaces the complete content by
a string on write.

∙ Target parser didn’t call .close() on the target object if parsing failed. Now it is guaranteed that
.close() will be called after parsing, regardless of the outcome.

Other changes

∙ Official support for Python 3.1.2 and later.

∙ Static MS Windows builds can now download their dependencies themselves.

∙ Element.attrib no longer uses a cyclic reference back to its Element object. It therefore no longer

213

2.2.5 (2010-02-28)

requires the garbage collector to clean up.

∙ Static builds include libiconv, in addition to libxml2 and libxslt.

2.2.8 (2010-09-02)

Bugs fixed

∙ Crash in newer libxml2 versions when moving elements between documents that had attributes on replaced
XInclude nodes.

∙ Import fix for urljoin in Python 3.1+.

2.2.7 (2010-07-24)

Bugs fixed

∙ Crash in XSLT when generating text-only result documents with a stylesheet created in a different thread.

2.2.6 (2010-03-02)

Bugs fixed

∙ Fixed several Python 3 regressions by building with Cython 0.11.3.

2.2.5 (2010-02-28)

Features added

∙ Support for running XSLT extension elements on the input root node (e.g. in a template matching on “/”).

Bugs fixed

∙ Crash in XPath evaluation when reading smart strings from a document other than the original context
document.

∙ Support recent versions of html5lib by not requiring its XHTMLParser in htmlparser.py anymore.

∙ Manually instantiating the custom element classes in lxml.objectify could crash.

∙ Invalid XML text characters were not rejected by the API when they appeared in unicode strings directly
after non-ASCII characters.

∙ lxml.html.open_http_urllib() did not work in Python 3.

214

2.2.3 (2009-10-30)

∙ The functions strip_tags() and strip_elements() in lxml.etree did not remove all occur-
rences of a tag in all cases.

∙ Crash in XSLT extension elements when the XSLT context node is not an element.

2.2.4 (2009-11-11)

Bugs fixed

∙ Static build of libxml2/libxslt was broken.

2.2.3 (2009-10-30)

Features added

Bugs fixed

∙ The resolve_entities option did not work in the incremental feed parser.

∙ Looking up and deleting attributes without a namespace could hit a namespaced attribute of the same name
instead.

∙ Late errors during calls to SubElement() (e.g. attribute related ones) could leave a partially initialised
element in the tree.

∙ Modifying trees that contain parsed entity references could result in an infinite loop.

∙ ObjectifiedElement.__setattr__ created an empty-string child element when the attribute value was rejected
as a non-unicode/non-ascii string

∙ Syntax errors in lxml.cssselect could result in misleading error messages.

∙ Invalid syntax in CSS expressions could lead to an infinite loop in the parser of lxml.cssselect.

∙ CSS special character escapes were not properly handled in lxml.cssselect.

∙ CSS Unicode escapes were not properly decoded in lxml.cssselect.

∙ Select options in HTML forms that had no explicit value attribute were not handled correctly. The HTML
standard dictates that their value is defined by their text content. This is now supported by lxml.html.

∙ XPath raised a TypeError when finding CDATA sections. This is now fully supported.

∙ Calling help(lxml.objectify) didn’t work at the prompt.

∙ The ElementMaker in lxml.objectify no longer defines the default namespaces when annotation is dis-
abled.

∙ Feed parser failed to honout the ’recover’ option on parse errors.

∙ Diverting the error logging to Python’s logging system was broken.

215

2.2 (2009-03-21)

Other changes

2.2.2 (2009-06-21)

Features added

∙ New helper functions strip_attributes(), strip_elements(), strip_tags() in lxml.etree
to remove attributes/subtrees/tags from a subtree.

Bugs fixed

∙ Namespace cleanup on subtree insertions could result in missing namespace declarations (and potentially
crashes) if the element defining a namespace was deleted and the namespace was not used by the top element
of the inserted subtree but only in deeper subtrees.

∙ Raising an exception from a parser target callback didn’t always terminate the parser.

∙ Only {true, false, 1, 0} are accepted as the lexical representation for BoolElement ({True, False, T, F, t, f}
not any more), restoring lxml <= 2.0 behaviour.

Other changes

2.2.1 (2009-06-02)

Features added

∙ Injecting default attributes into a document during XML Schema validation (also at parse time).

∙ Pass huge_tree parser option to disable parser security restrictions imposed by libxml2 2.7.

Bugs fixed

∙ The script for statically building libxml2 and libxslt didn’t work in Py3.

∙ XMLSchema() also passes invalid schema documents on to libxml2 for parsing (which could lead to a
crash before release 2.6.24).

Other changes

2.2 (2009-03-21)

Features added

∙ Support for standalone flag in XML declaration through tree.docinfo.standalone and by pass-
ing standalone=True/False on serialisation.

216

2.2beta3 (2009-02-17)

Bugs fixed

∙ Crash when parsing an XML Schema with external imports from a filename.

2.2beta4 (2009-02-27)

Features added

∙ Support strings and instantiable Element classes as child arguments to the constructor of custom Element
classes.

∙ GZip compression support for serialisation to files and file-like objects.

Bugs fixed

∙ Deep-copying an ElementTree copied neither its sibling PIs and comments nor its internal/external DTD
subsets.

∙ Soupparser failed on broken attributes without values.

∙ Crash in XSLT when overwriting an already defined attribute using xsl:attribute.

∙ Crash bug in exception handling code under Python 3. This was due to a problem in Cython, not lxml itself.

∙ lxml.html.FormElement._name() failed for non top-level forms.

∙ TAG special attribute in constructor of custom Element classes was evaluated incorrectly.

Other changes

∙ Official support for Python 3.0.1.

∙ Element.findtext() now returns an empty string instead of None for Elements without text content.

2.2beta3 (2009-02-17)

Features added

∙ XSLT.strparam() class method to wrap quoted string parameters that require escaping.

Bugs fixed

∙ Memory leak in XPath evaluators.

∙ Crash when parsing indented XML in one thread and merging it with other documents parsed in another
thread.

∙ Setting the base attribute in lxml.objectify from a unicode string failed.

217

2.2beta1 (2008-12-12)

∙ Fixes following changes in Python 3.0.1.

∙ Minor fixes for Python 3.

Other changes

∙ The global error log (which is copied into the exception log) is now local to a thread, which fixes some race
conditions.

∙ More robust error handling on serialisation.

2.2beta2 (2009-01-25)

Bugs fixed

∙ Potential memory leak on exception handling. This was due to a problem in Cython, not lxml itself.

∙ iter_links (and related link-rewriting functions) in lxml.htmlwould interpret CSS like url("link")
incorrectly (treating the quotation marks as part of the link).

∙ Failing import on systems that have an io module.

2.1.5 (2009-01-06)

Bugs fixed

∙ Potential memory leak on exception handling. This was due to a problem in Cython, not lxml itself.

∙ Failing import on systems that have an io module.

2.2beta1 (2008-12-12)

Features added

∙ Allow lxml.html.diff.htmldiff to accept Element objects, not just HTML strings.

Bugs fixed

∙ Crash when using an XPath evaluator in multiple threads.

∙ Fixed missing whitespace before Link:... in lxml.html.diff.

Other changes

∙ Export lxml.html.parse.

218

2.1.3 (2008-11-17)

2.1.4 (2008-12-12)

Bugs fixed

∙ Crash when using an XPath evaluator in multiple threads.

2.0.11 (2008-12-12)

Bugs fixed

∙ Crash when using an XPath evaluator in multiple threads.

2.2alpha1 (2008-11-23)

Features added

∙ Support for XSLT result tree fragments in XPath/XSLT extension functions.

∙ QName objects have new properties namespace and localname.

∙ New options for exclusive C14N and C14N without comments.

∙ Instantiating a custom Element classes creates a new Element.

Bugs fixed

∙ XSLT didn’t inherit the parse options of the input document.

∙ 0-bytes could slip through the API when used inside of Unicode strings.

∙ With lxml.html.clean.autolink, links with balanced parenthesis, that end in a parenthesis, will be
linked in their entirety (typical with Wikipedia links).

Other changes

2.1.3 (2008-11-17)

Features added

Bugs fixed

∙ Ref-count leaks when lxml enters a try-except statement while an outside exception lives in sys.exc_*().
This was due to a problem in Cython, not lxml itself.

∙ Parser Unicode decoding errors could get swallowed by other exceptions.

∙ Name/import errors in some Python modules.

219

2.0.9 (2008-09-05)

∙ Internal DTD subsets that did not specify a system or public ID were not serialised and did not appear in
the docinfo property of ElementTrees.

∙ Fix a pre-Py3k warning when parsing from a gzip file in Py2.6.

∙ Test suite fixes for libxml2 2.7.

∙ Resolver.resolve_string() did not work for non-ASCII byte strings.

∙ Resolver.resolve_file() was broken.

∙ Overriding the parser encoding didn’t work for many encodings.

Other changes

2.0.10 (2008-11-17)

Bugs fixed

∙ Ref-count leaks when lxml enters a try-except statement while an outside exception lives in sys.exc_*().
This was due to a problem in Cython, not lxml itself.

2.1.2 (2008-09-05)

Features added

∙ lxml.etree now tries to find the absolute path name of files when parsing from a file-like object. This helps
custom resolvers when resolving relative URLs, as lixbml2 can prepend them with the path of the source
document.

Bugs fixed

∙ Memory problem when passing documents between threads.

∙ Target parser did not honour the recover option and raised an exception instead of calling .close() on
the target.

Other changes

2.0.9 (2008-09-05)

Bugs fixed

∙ Memory problem when passing documents between threads.

∙ Target parser did not honour the recover option and raised an exception instead of calling .close() on
the target.

220

2.1 (2008-07-09)

2.1.1 (2008-07-24)

Features added

Bugs fixed

∙ Crash when parsing XSLT stylesheets in a thread and using them in another.

∙ Encoding problem when including text with ElementInclude under Python 3.

Other changes

2.0.8 (2008-07-24)

Features added

∙ lxml.html.rewrite_links() strips links to work around documents with whitespace in URL at-
tributes.

Bugs fixed

∙ Crash when parsing XSLT stylesheets in a thread and using them in another.

∙ CSS selector parser dropped remaining expression after a function with parameters.

Other changes

2.1 (2008-07-09)

Features added

∙ Smart strings can be switched off in XPath (smart_strings keyword option).

∙ lxml.html.rewrite_links() strips links to work around documents with whitespace in URL at-
tributes.

Bugs fixed

∙ Custom resolvers were not used for XMLSchema includes/imports and XInclude processing.

∙ CSS selector parser dropped remaining expression after a function with parameters.

Other changes

∙ objectify.enableRecursiveStr()was removed, use objectify.enable_recursive_str()
instead

221

2.1beta3 (2008-06-19)

∙ Speed-up when running XSLTs on documents from other threads

2.0.7 (2008-06-20)

Features added

∙ Pickling ElementTree objects in lxml.objectify.

Bugs fixed

∙ Descending dot-separated classes in CSS selectors were not resolved correctly.

∙ ElementTree.parse() didn’t handle target parser result.

∙ Potential threading problem in XInclude.

∙ Crash in Element class lookup classes when the __init__() method of the super class is not called from
Python subclasses.

Other changes

∙ Non-ASCII characters in attribute values are no longer escaped on serialisation.

2.1beta3 (2008-06-19)

Features added

∙ Major overhaul of tools/xpathgrep.py script.

∙ Pickling ElementTree objects in lxml.objectify.

∙ Support for parsing from file-like objects that return unicode strings.

∙ New function etree.cleanup_namespaces(el) that removes unused namespace declarations from
a (sub)tree (experimental).

∙ XSLT results support the buffer protocol in Python 3.

∙ Polymorphic functions in lxml.html that accept either a tree or a parsable string will return either a UTF-
8 encoded byte string, a unicode string or a tree, based on the type of the input. Previously, the result was
always a byte string or a tree.

∙ Support for Python 2.6 and 3.0 beta.

∙ File name handling now uses a heuristic to convert between byte strings (usually filenames) and unicode
strings (usually URLs).

∙ Parsing from a plain file object frees the GIL under Python 2.x.

∙ Running iterparse() on a plain file (or filename) frees the GIL on reading under Python 2.x.

∙ Conversion functions html_to_xhtml() and xhtml_to_html() in lxml.html (experimental).

222

2.0.6 (2008-05-31)

∙ Most features in lxml.html work for XHTML namespaced tag names (experimental).

Bugs fixed

∙ ElementTree.parse() didn’t handle target parser result.

∙ Crash in Element class lookup classes when the __init__() method of the super class is not called from
Python subclasses.

∙ A number of problems related to unicode/byte string conversion of filenames and error messages were fixed.

∙ Building on MacOS-X now passes the “flat_namespace” option to the C compiler, which reportedly prevents
build quirks and crashes on this platform.

∙ Windows build was broken.

∙ Rare crash when serialising to a file object with certain encodings.

Other changes

∙ Non-ASCII characters in attribute values are no longer escaped on serialisation.

∙ Passing non-ASCII byte strings or invalid unicode strings as .tag, namespaces, etc. will result in a ValueEr-
ror instead of an AssertionError (just like the tag well-formedness check).

∙ Up to several times faster attribute access (i.e. tree traversal) in lxml.objectify.

2.0.6 (2008-05-31)

Features added

Bugs fixed

∙ Incorrect evaluation of el.find("tag[child]").

∙ Windows build was broken.

∙ Moving a subtree from a document created in one thread into a document of another thread could crash
when the rest of the source document is deleted while the subtree is still in use.

∙ Rare crash when serialising to a file object with certain encodings.

Other changes

∙ lxml should now build without problems on MacOS-X.

223

2.1beta1 (2008-04-15)

2.1beta2 (2008-05-02)

Features added

∙ All parse functions in lxml.html take a parser keyword argument.

∙ lxml.html has a new parser class XHTMLParser and a module attribute xhtml_parser that provide
XML parsers that are pre-configured for the lxml.html package.

Bugs fixed

∙ Moving a subtree from a document created in one thread into a document of another thread could crash
when the rest of the source document is deleted while the subtree is still in use.

∙ Passing an nsmap when creating an Element will no longer strip redundantly defined namespace URIs. This
prevented the definition of more than one prefix for a namespace on the same Element.

Other changes

∙ If the default namespace is redundantly defined with a prefix on the same Element, the prefix will now be
preferred for subelements and attributes. This allows users to work around a problem in libxml2 where
attributes from the default namespace could serialise without a prefix even when they appear on an Element
with a different namespace (i.e. they would end up in the wrong namespace).

2.0.5 (2008-05-01)

Features added

Bugs fixed

∙ Resolving to a filename in custom resolvers didn’t work.

∙ lxml did not honour libxslt’s second error state “STOPPED”, which let some XSLT errors pass silently.

∙ Memory leak in Schematron with libxml2 >= 2.6.31.

Other changes

2.1beta1 (2008-04-15)

Features added

∙ Error logging in Schematron (requires libxml2 2.6.32 or later).

∙ Parser option strip_cdata for normalising or keeping CDATA sections. Defaults to True as before,
thus replacing CDATA sections by their text content.

∙ CDATA() factory to wrap string content as CDATA section.

224

2.1alpha1 (2008-03-27)

Bugs fixed

∙ Resolving to a filename in custom resolvers didn’t work.

∙ lxml did not honour libxslt’s second error state “STOPPED”, which let some XSLT errors pass silently.

∙ Memory leak in Schematron with libxml2 >= 2.6.31.

∙ lxml.etree accepted non well-formed namespace prefix names.

Other changes

∙ Major cleanup in internal moveNodeToDocument() function, which takes care of namespace cleanup
when moving elements between different namespace contexts.

∙ New Elements created through the makeelement() method of an HTML parser or through lxml.html
now end up in a new HTML document (doctype HTML 4.01 Transitional) instead of a generic XML docu-
ment. This mostly impacts the serialisation and the availability of a DTD context.

2.0.4 (2008-04-13)

Features added

Bugs fixed

∙ Hanging thread in conjunction with GTK threading.

∙ Crash bug in iterparse when moving elements into other documents.

∙ HTML elements’ .cssselect() method was broken.

∙ ElementTree.find*() didn’t accept QName objects.

Other changes

2.1alpha1 (2008-03-27)

Features added

∙ New event types ’comment’ and ’pi’ in iterparse().

∙ XSLTAccessControl instances have a property options that returns a dict of access configuration
options.

∙ Constant instances DENY_ALL and DENY_WRITE on XSLTAccessControl class.

∙ Extension elements for XSLT (experimental!)

∙ Element.base property returns the xml:base or HTML base URL of an Element.

∙ docinfo.URL property is writable.

225

2.0.3 (2008-03-26)

Bugs fixed

∙ Default encoding for plain text serialisation was different from that of XML serialisation (UTF-8 instead of
ASCII).

Other changes

∙ Minor API speed-ups.

∙ The benchmark suite now uses tail text in the trees, which makes the absolute numbers incomparable to
previous results.

∙ Generating the HTML documentation now requires Pygments, which is used to enable syntax highlighting
for the doctest examples.

Most long-time deprecated functions and methods were removed:

∙ etree.clearErrorLog(), use etree.clear_error_log()

∙ etree.useGlobalPythonLog(), use etree.use_global_python_log()

∙ etree.ElementClassLookup.setFallback(), use etree.ElementClassLookup.set_fallback()

∙ etree.getDefaultParser(), use etree.get_default_parser()

∙ etree.setDefaultParser(), use etree.set_default_parser()

∙ etree.setElementClassLookup(), use etree.set_element_class_lookup()

Note that parser.setElementClassLookup() has not been removed yet, although parser.set_element_class_lookup()
should be used instead.

∙ xpath_evaluator.registerNamespace(), use xpath_evaluator.register_namespace()

∙ xpath_evaluator.registerNamespaces(), use xpath_evaluator.register_namespaces()

∙ objectify.setPytypeAttributeTag, use objectify.set_pytype_attribute_tag

∙ objectify.setDefaultParser(), use objectify.set_default_parser()

2.0.3 (2008-03-26)

Features added

∙ soupparser.parse() allows passing keyword arguments on to BeautifulSoup.

∙ fromstring() method in lxml.html.soupparser.

Bugs fixed

∙ lxml.html.diff didn’t treat empty tags properly (e.g.,
).

∙ Handle entity replacements correctly in target parser.

∙ Crash when using iterparse() with XML Schema validation.

226

http://pygments.org/

2.0.1 (2008-02-13)

∙ The BeautifulSoup parser (soupparser.py) did not replace entities, which made them turn up in text content.

∙ Attribute assignment of custom PyTypes in objectify could fail to correctly serialise the value to a string.

Other changes

∙ lxml.html.ElementSoup was replaced by a new module lxml.html.soupparser with a more
consistent API. The old module remains for compatibility with ElementTree’s own ElementSoup module.

∙ Setting the XSLT_CONFIG and XML2_CONFIG environment variables at build time will let setup.py pick
up the xml2-config and xslt-config scripts from the supplied path name.

∙ Passing --with-xml2-config=/path/to/xml2-config to setup.py will override the xml2-config
script that is used to determine the C compiler options. The same applies for the --with-xslt-config
option.

2.0.2 (2008-02-22)

Features added

∙ Support passing base_url to file parser functions to override the filename of the file(-like) object.

Bugs fixed

∙ The prefix for objectify’s pytype namespace was missing from the set of default prefixes.

∙ Memory leak in Schematron (fixed only for libxml2 2.6.31+).

∙ Error type names in RelaxNG were reported incorrectly.

∙ Slice deletion bug fixed in objectify.

Other changes

∙ Enabled doctests for some Python modules (especially lxml.html).

∙ Add a method argument to lxml.html.tostring() (method="xml" for XHTML output).

∙ Make it clearer that methods like lxml.html.fromstring() take a base_url argument.

2.0.1 (2008-02-13)

Features added

∙ Child iteration in lxml.pyclasslookup.

∙ Loads of new docstrings reflect the signature of functions and methods to make them visible in API docs
and help()

227

2.0 (2008-02-01)

Bugs fixed

∙ The module lxml.html.builder was duplicated as lxml.htmlbuilder

∙ Form elements would return None for form.fields.keys() if there was an unnamed input field. Now
unnamed input fields are completely ignored.

∙ Setting an element slice in objectify could insert slice-overlapping elements at the wrong position.

Other changes

∙ The generated API documentation was cleaned up and disburdened from non-public classes etc.

∙ The previously public module lxml.html.setmixin was renamed to lxml.html._setmixin as
it is not an official part of lxml. If you want to use it, feel free to copy it over to your own source base.

∙ Passing --with-xslt-config=/path/to/xslt-config to setup.py will override the xslt-config
script that is used to determine the C compiler options.

2.0 (2008-02-01)

Features added

∙ Passing the unicode type as encoding to tostring() will serialise to unicode. The tounicode()
function is now deprecated.

∙ XMLSchema() and RelaxNG() can parse from StringIO.

∙ makeparser() function in lxml.objectify to create a new parser with the usual objectify setup.

∙ Plain ASCII XPath string results are no longer forced into unicode objects as in 2.0beta1, but are returned
as plain strings as before.

∙ All XPath string results are ’smart’ objects that have a getparent() method to retrieve their parent
Element.

∙ with_tail option in serialiser functions.

∙ More accurate exception messages in validator creation.

∙ Parse-time XML schema validation (schema parser keyword).

∙ XPath string results of the text() function and attribute selection make their Element container accessible
through a getparent() method. As a side-effect, they are now always unicode objects (even ASCII
strings).

∙ XSLT objects are usable in any thread - at the cost of a deep copy if they were not created in that thread.

∙ Invalid entity names and character references will be rejected by the Entity() factory.

∙ entity.text returns the textual representation of the entity, e.g. &.

∙ New properties position and code on ParseError exception (as in ET 1.3)

∙ Rich comparison of element.attrib proxies.

∙ ElementTree compatible TreeBuilder class.

228

2.0 (2008-02-01)

∙ Use default prefixes for some common XML namespaces.

∙ lxml.html.clean.Cleaner now allows for a host_whitelist, and two overridable methods:
allow_embedded_url(el, url) and the more general allow_element(el).

∙ Extended slicing of Elements as in element[1:-1:2], both in etree and in objectify

∙ Resolvers can now provide a base_url keyword argument when resolving a document as string data.

∙ When using lxml.doctestcompare you can give the doctest option NOPARSE_MARKUP (like # doctest:
+NOPARSE_MARKUP) to suppress the special checking for one test.

∙ Separate feed_error_log property for the feed parser interface. The normal parser interface and
iterparse continue to use error_log.

∙ The normal parsers and the feed parser interface are now separated and can be used concurrently on the
same parser instance.

∙ fromstringlist() and tostringlist() functions as in ElementTree 1.3

∙ iterparse() accepts an html boolean keyword argument for parsing with the HTML parser (note that
this interface may be subject to change)

∙ Parsers accept an encoding keyword argument that overrides the encoding of the parsed documents.

∙ New C-API function hasChild() to test for children

∙ annotate() function in objectify can annotate with Python types and XSI types in one step. Accompa-
nied by xsiannotate() and pyannotate().

∙ ET.write(), tostring() and tounicode() now accept a keyword argument method that can be
one of ’xml’ (or None), ’html’ or ’text’ to serialise as XML, HTML or plain text content.

∙ iterfind() method on Elements returns an iterator equivalent to findall()

∙ itertext() method on Elements

∙ Setting a QName object as value of the .text property or as an attribute will resolve its prefix in the respective
context

∙ ElementTree-like parser target interface as described in http://effbot.org/elementtree/elementtree-xmlparser.
htm

∙ ElementTree-like feed parser interface on XMLParser and HTMLParser (feed() and close() methods)

∙ Reimplemented objectify.E for better performance and improved integration with objectify. Provides
extended type support based on registered PyTypes.

∙ XSLT objects now support deep copying

∙ New makeSubElement() C-API function that allows creating a new subelement straight with text, tail
and attributes.

∙ XPath extension functions can now access the current context node (context.context_node) and use
a context dictionary (context.eval_context) from the context provided in their first parameter

∙ HTML tag soup parser based on BeautifulSoup in lxml.html.ElementSoup

∙ New module lxml.doctestcompare by Ian Bicking for writing simplified doctests based on XML/HTML
output. Use by importing lxml.usedoctest or lxml.html.usedoctest from within a doctest.

∙ New module lxml.cssselect by Ian Bicking for selecting Elements with CSS selectors.

229

http://effbot.org/elementtree/elementtree-xmlparser.htm
http://effbot.org/elementtree/elementtree-xmlparser.htm

2.0 (2008-02-01)

∙ New package lxml.html written by Ian Bicking for advanced HTML treatment.

∙ Namespace class setup is now local to the ElementNamespaceClassLookup instance and no longer
global.

∙ Schematron validation (incomplete in libxml2)

∙ Additional stringify argument to objectify.PyType() takes a conversion function to strings to
support setting text values from arbitrary types.

∙ Entity support through an Entity factory and element classes. XML parsers now have a resolve_entities
keyword argument that can be set to False to keep entities in the document.

∙ column field on error log entries to accompany the line field

∙ Error specific messages in XPath parsing and evaluation NOTE: for evaluation errors, you will now get an
XPathEvalError instead of an XPathSyntaxError. To catch both, you can except on XPathError

∙ The regular expression functions in XPath now support passing a node-set instead of a string

∙ Extended type annotation in objectify: new xsiannotate() function

∙ EXSLT RegExp support in standard XPath (not only XSLT)

Bugs fixed

∙ Missing import in lxml.html.clean.

∙ Some Python 2.4-isms prevented lxml from building/running under Python 2.3.

∙ XPath on ElementTrees could crash when selecting the virtual root node of the ElementTree.

∙ Compilation --without-threading was buggy in alpha5/6.

∙ Memory leak in the parse() function.

∙ Minor bugs in XSLT error message formatting.

∙ Result document memory leak in target parser.

∙ Target parser failed to report comments.

∙ In the lxml.html iter_links method, links in <object> tags weren’t recognized. (Note: plugin-
specific link parameters still aren’t recognized.) Also, the <embed> tag, though not standard, is now
included in lxml.html.defs.special_inline_tags.

∙ Using custom resolvers on XSLT stylesheets parsed from a string could request ill-formed URLs.

∙ With lxml.doctestcompare if you do <tag xmlns="..."> in your output, it will then be namespace-
neutral (before the ellipsis was treated as a real namespace).

∙ AttributeError in feed parser on parse errors

∙ XML feed parser setup problem

∙ Type annotation for unicode strings in DataElement()

∙ lxml failed to serialise namespace declarations of elements other than the root node of a tree

∙ Race condition in XSLT where the resolver context leaked between concurrent XSLT calls

230

2.0 (2008-02-01)

∙ lxml.etree did not check tag/attribute names

∙ The XML parser did not report undefined entities as error

∙ The text in exceptions raised by XML parsers, validators and XPath evaluators now reports the first error
that occurred instead of the last

∙ Passing ” as XPath namespace prefix did not raise an error

∙ Thread safety in XPath evaluators

Other changes

∙ Exceptions carry only the part of the error log that is related to the operation that caused the error.

∙ XMLSchema() and RelaxNG() now enforce passing the source file/filename through the file keyword
argument.

∙ The test suite now skips most doctests under Python 2.3.

∙ make clean no longer removes the .c files (use make realclean instead)

∙ Minor performance tweaks for Element instantiation and subelement creation

∙ Various places in the XPath, XSLT and iteration APIs now require keyword-only arguments.

∙ The argument order in element.itersiblings() was changed to match the order used in all other
iteration methods. The second argument (’preceding’) is now a keyword-only argument.

∙ The getiterator() method on Elements and ElementTrees was reverted to return an iterator as it did
in lxml 1.x. The ET API specification allows it to return either a sequence or an iterator, and it traditionally
returned a sequence in ET and an iterator in lxml. However, it is now deprecated in favour of the iter()
method, which should be used in new code wherever possible.

∙ The ’pretty printed’ serialisation of ElementTree objects now inserts newlines at the root level between
processing instructions, comments and the root tag.

∙ A ’pretty printed’ serialisation is now terminated with a newline.

∙ Second argument to lxml.etree.Extension() helper is no longer required, third argument is now a
keyword-only argument ns.

∙ lxml.html.tostring takes an encoding argument.

∙ The module source files were renamed to “lxml.*.pyx”, such as “lxml.etree.pyx”. This was changed for
consistency with the way Pyrex commonly handles package imports. The main effect is that classes now
know about their fully qualified class name, including the package name of their module.

∙ Keyword-only arguments in some API functions, especially in the parsers and serialisers.

∙ Tag name validation in lxml.etree (and lxml.html) now distinguishes between HTML tags and XML tags
based on the parser that was used to parse or create them. HTML tags no longer reject any non-ASCII
characters in tag names but only spaces and the special characters <>&/"’.

∙ lxml.etree now emits a warning if you use XPath with libxml2 2.6.27 (which can crash on certain XPath
errors)

∙ Type annotation in objectify now preserves the already annotated type by default to prevent loosing type
information that is already there.

231

1.3.4 (2007-08-30)

∙ element.getiterator() returns a list, use element.iter() to retrieve an iterator (ElementTree
1.3 compatible behaviour)

∙ objectify.PyType for None is now called “NoneType”

∙ el.getiterator() renamed to el.iter(), following ElementTree 1.3 - original name is still avail-
able as alias

∙ In the public C-API, findOrBuildNodeNs()was replaced by the more generic findOrBuildNodeNsPrefix

∙ Major refactoring in XPath/XSLT extension function code

∙ Network access in parsers disabled by default

1.3.6 (2007-10-29)

Bugs fixed

∙ Backported decref crash fix from 2.0

∙ Well hidden free-while-in-use crash bug in ObjectPath

Other changes

∙ The test suites now run gc.collect() in the tearDown() methods. While this makes them take a
lot longer to run, it also makes it easier to link a specific test to garbage collection problems that would
otherwise appear in later tests.

1.3.5 (2007-10-22)

Features added

Bugs fixed

∙ lxml.etree could crash when adding more than 10000 namespaces to a document

∙ lxml failed to serialise namespace declarations of elements other than the root node of a tree

1.3.4 (2007-08-30)

Features added

∙ The ElementMaker in lxml.builder now accepts the keyword arguments namespace and nsmap
to set a namespace and nsmap for the Elements it creates.

∙ The docinfo on ElementTree objects has new properties internalDTD and externalDTD that return
a DTD object for the internal or external subset of the document respectively.

232

1.3.2 (2007-07-03)

∙ Serialising an ElementTree now includes any internal DTD subsets that are part of the document, as well as
comments and PIs that are siblings of the root node.

Bugs fixed

∙ Parsing with the no_network option could fail

Other changes

∙ lxml now raises a TagNameWarning about tag names containing ’:’ instead of an Error as 1.3.3 did. The
reason is that a number of projects currently misuse the previous lack of tag name validation to generate
namespace prefixes without declaring namespaces. Apart from the danger of generating broken XML this
way, it also breaks most of the namespace-aware tools in XML, including XPath, XSLT and validation. lxml
1.3.x will continue to support this bug with a Warning, while lxml 2.0 will be strict about well-formed tag
names (not only regarding ’:’).

∙ Serialising an Element no longer includes its comment and PI siblings (only ElementTree serialisation
includes them).

1.3.3 (2007-07-26)

Features added

∙ ElementTree compatible parser ETCompatXMLParser strips processing instructions and comments while
parsing XML

∙ Parsers now support stripping PIs (keyword argument ’remove_pis’)

∙ etree.fromstring() now supports parsing both HTML and XML, depending on the parser you pass.

∙ Support base_url keyword argument in HTML() and XML()

Bugs fixed

∙ Parsing from Python Unicode strings failed on some platforms

∙ Element() did not raise an exception on tag names containing ’:’

∙ Element.getiterator(tag) did not accept Comment and ProcessingInstruction as tags.
It also accepts Element now.

1.3.2 (2007-07-03)

Features added

Bugs fixed

∙ “deallocating None” crash bug

233

1.3 (2007-06-24)

1.3.1 (2007-07-02)

Features added

∙ objectify.DataElement now supports setting values from existing data elements (not just plain Python types)
and reuses defined namespaces etc.

∙ E-factory support for lxml.objectify (objectify.E)

Bugs fixed

∙ Better way to prevent crashes in Element proxy cleanup code

∙ objectify.DataElement didn’t set up None value correctly

∙ objectify.DataElement didn’t check the value against the provided type hints

∙ Reference-counting bug in Element.attrib.pop()

1.3 (2007-06-24)

Features added

∙ Module lxml.pyclasslookup module implements an Element class lookup scheme that can access the
entire tree in read-only mode to help determining a suitable Element class

∙ Parsers take a remove_comments keyword argument that skips over comments

∙ parse() function in objectify, corresponding to XML() etc.

∙ Element.addnext(el) and Element.addprevious(el) methods to support adding processing
instructions and comments around the root node

∙ Element.attrib was missing clear() and pop() methods

∙ Extended type annotation in objectify: cleaner annotation namespace setup plus new deannotate()
function

∙ Support for custom Element class instantiation in lxml.sax: passing a makeelement function to the Ele-
mentTreeContentHandler will reuse the lookup context of that function

∙ ’.’ represents empty ObjectPath (identity)

∙ Element.values() to accompany the existing .keys() and .items()

∙ collectAttributes() C-function to build a list of attribute keys/values/items for a libxml2 node

∙ DTD validator class (like RelaxNG and XMLSchema)

∙ HTML generator helpers by Fredrik Lundh in lxml.htmlbuilder

∙ ElementMaker XML generator by Fredrik Lundh in lxml.builder.E

∙ Support for pickeling objectify.ObjectifiedElement objects to XML

∙ update() method on Element.attrib

234

1.2.1 (2007-02-27)

∙ Optimised replacement for libxml2’s _xmlReconsiliateNs(). This allows lxml a better handling of names-
paces when moving elements between documents.

Bugs fixed

∙ Removing Elements from a tree could make them loose their namespace declarations

∙ ElementInclude didn’t honour base URL of original document

∙ Replacing the children slice of an Element would cut off the tails of the original children

∙ Element.getiterator(tag) did not accept Comment and ProcessingInstruction as tags

∙ API functions now check incoming strings for XML conformity. Zero bytes or low ASCII characters are no
longer accepted (AssertionError).

∙ XSLT parsing failed to pass resolver context on to imported documents

∙ passing ” as namespace prefix in nsmap could be passed through to libxml2

∙ Objectify couldn’t handle prefixed XSD type names in xsi:type

∙ More ET compatible behaviour when writing out XML declarations or not

∙ More robust error handling in iterparse()

∙ Documents lost their top-level PIs and comments on serialisation

∙ lxml.sax failed on comments and PIs. Comments are now properly ignored and PIs are copied.

∙ Possible memory leaks in namespace handling when moving elements between documents

Other changes

∙ major restructuring in the documentation

1.2.1 (2007-02-27)

Bugs fixed

∙ Build fixes for MS compiler

∙ Item assignments to special names like element["text"] failed

∙ Renamed ObjectifiedDataElement.__setText() to _setText() to make it easier to access

∙ The pattern for attribute names in ObjectPath was too restrictive

235

1.1.2 (2006-10-30)

1.2 (2007-02-20)

Features added

∙ Rich comparison of QName objects

∙ Support for regular expressions in benchmark selection

∙ get/set emulation (not .attrib!) for attributes on processing instructions

∙ ElementInclude Python module for ElementTree compatible XInclude processing that honours custom re-
solvers registered with the source document

∙ ElementTree.parser property holds the parser used to parse the document

∙ setup.py has been refactored for greater readability and flexibility

∙ --rpath flag to setup.py to induce automatic linking-in of dynamic library runtime search paths has been
renamed to --auto-rpath. This makes it possible to pass an --rpath directly to distutils; previously this was
being shadowed.

Bugs fixed

∙ Element instantiation now uses locks to prevent race conditions with threads

∙ ElementTree.write() did not raise an exception when the file was not writable

∙ Error handling could crash under Python <= 2.4.1 - fixed by disabling thread support in these environments

∙ Element.find*() did not accept QName objects as path

Other changes

∙ code cleanup: redundant _NodeBase super class merged into _Element class Note: although the impact
should be zero in most cases, this change breaks the compatibiliy of the public C-API

1.1.2 (2006-10-30)

Features added

∙ Data elements in objectify support repr(), which is now used by dump()

∙ Source distribution now ships with a patched Pyrex

∙ New C-API function makeElement() to create new elements with text, tail, attributes and namespaces

∙ Reuse original parser flags for XInclude

∙ Simplified support for handling XSLT processing instructions

236

1.1 (2006-09-13)

Bugs fixed

∙ Parser resources were not freed before the next parser run

∙ Open files and XML strings returned by Python resolvers were not closed/freed

∙ Crash in the IDDict returned by XMLDTDID

∙ Copying Comments and ProcessingInstructions failed

∙ Memory leak for external URLs in _XSLTProcessingInstruction.parseXSL()

∙ Memory leak when garbage collecting tailed root elements

∙ HTML script/style content was not propagated to .text

∙ Show text xincluded between text nodes correctly in .text and .tail

∙ ’integer * objectify.StringElement’ operation was not supported

1.1.1 (2006-09-21)

Features added

∙ XSLT profiling support (profile_run keyword)

∙ countchildren() method on objectify.ObjectifiedElement

∙ Support custom elements for tree nodes in lxml.objectify

Bugs fixed

∙ lxml.objectify failed to support long data values (e.g., “123L”)

∙ Error messages from XSLT did not reach XSLT.error_log

∙ Factories objectify.Element() and objectify.DataElement() were missing attrib and nsmap keyword ar-
guments

∙ Changing the default parser in lxml.objectify did not update the factories Element() and DataElement()

∙ Let lxml.objectify.Element() always generate tree elements (not data elements)

∙ Build under Windows failed (’0’ bug in patched Pyrex version)

1.1 (2006-09-13)

Features added

∙ Comments and processing instructions return ’<!-- coment -->’ and ’<?pi-target content?>’ for repr()

∙ Parsers are now the preferred (and default) place where element class lookup schemes should be registered.
Namespace lookup is no longer supported by default.

237

1.1 (2006-09-13)

∙ Support for Python 2.5 beta

∙ Unlock the GIL for deep copying documents and for XPath()

∙ New compact keyword argument for parsing read-only documents

∙ Support for parser options in iterparse()

∙ The namespace axis is supported in XPath and returns (prefix, URI) tuples

∙ The XPath expression “/” now returns an empty list instead of raising an exception

∙ XML-Object API on top of lxml (lxml.objectify)

∙ Customizable Element class lookup:

– different pre-implemented lookup mechanisms

– support for externally provided lookup functions

∙ Support for processing instructions (ET-like, not compatible)

∙ Public C-level API for independent extension modules

∙ Module level iterwalk() function as ’iterparse’ for trees

∙ Module level iterparse() function similar to ElementTree (see documentation for differences)

∙ Element.nsmap property returns a mapping of all namespace prefixes known at the Element to their names-
pace URI

∙ Reentrant threading support in RelaxNG, XMLSchema and XSLT

∙ Threading support in parsers and serializers:

– All in-memory operations (tostring, parse(StringIO), etc.) free the GIL

– File operations (on file names) free the GIL

– Reading from file-like objects frees the GIL and reacquires it for reading

– Serialisation to file-like objects is single-threaded (high lock overhead)

∙ Element iteration over XPath axes:

– Element.iterdescendants() iterates over the descendants of an element

– Element.iterancestors() iterates over the ancestors of an element (from parent to parent)

– Element.itersiblings() iterates over either the following or preceding siblings of an element

– Element.iterchildren() iterates over the children of an element in either direction

– All iterators support the tag keyword argument to restrict the generated elements

∙ Element.getnext() and Element.getprevious() return the direct siblings of an element

Bugs fixed

∙ filenames with local 8-bit encoding were not supported

∙ 1.1beta did not compile under Python 2.3

238

1.0.3 (2006-08-08)

∙ ignore unknown ’pyval’ attribute values in objectify

∙ objectify.ObjectifiedElement.addattr() failed to accept Elements and Lists

∙ objectify.ObjectPath.setattr() failed to accept Elements and Lists

∙ XPathSyntaxError now inherits from XPathError

∙ Threading race conditions in RelaxNG and XMLSchema

∙ Crash when mixing elements from XSLT results into other trees, concurrent XSLT is only allowed when
the stylesheet was parsed in the main thread

∙ The EXSLT regexp:match function now works as defined (except for some differences in the regular
expression syntax)

∙ Setting element.text to ” returned None on request, not the empty string

∙ iterparse() could crash on long XML files

∙ Creating documents no longer copies the parser for later URL resolving. For performance reasons, only
a reference is kept. Resolver updates on the parser will now be reflected by documents that were parsed
before the change. Although this should rarely become visible, it is a behavioral change from 1.0.

1.0.4 (2006-09-09)

Features added

∙ List-like Element.extend() method

Bugs fixed

∙ Crash in tail handling in Element.replace()

1.0.3 (2006-08-08)

Features added

∙ Element.replace(old, new) method to replace a subelement by another one

Bugs fixed

∙ Crash when mixing elements from XSLT results into other trees

∙ Copying/deepcopying did not work for ElementTree objects

∙ Setting an attribute to a non-string value did not raise an exception

∙ Element.remove() deleted the tail text from the removed Element

239

1.0.1 (2006-06-09)

1.0.2 (2006-06-27)

Features added

∙ Support for setting a custom default Element class as opposed to namespace specific classes (which still
override the default class)

Bugs fixed

∙ Rare exceptions in Python list functions were not handled

∙ Parsing accepted unicode strings with XML encoding declaration in certain cases

∙ Parsing 8-bit encoded strings from StringIO objects raised an exception

∙ Module function initThread() was removed - useless (and never worked)

∙ XSLT and parser exception messages include the error line number

1.0.1 (2006-06-09)

Features added

∙ Repeated calls to Element.attrib now efficiently return the same instance

Bugs fixed

∙ Document deallocation could crash in certain garbage collection scenarios

∙ Extension function calls in XSLT variable declarations could break the stylesheet and crash on repeated
calls

∙ Deep copying Elements could loose namespaces declared in parents

∙ Deep copying Elements did not copy tail

∙ Parsing file(-like) objects failed to load external entities

∙ Parsing 8-bit strings from file(-like) objects raised an exception

∙ xsl:include failed when the stylesheet was parsed from a file-like object

∙ lxml.sax.ElementTreeProducer did not call startDocument() / endDocument()

∙ MSVC compiler complained about long strings (supports only 2048 bytes)

240

1.0 (2006-06-01)

1.0 (2006-06-01)

Features added

∙ Element.getiterator() and the findall() methods support finding arbitrary elements from a namespace (pattern
{namespace}*)

∙ Another speedup in tree iteration code

∙ General speedup of Python Element object creation and deallocation

∙ Writing C14N no longer serializes in memory (reduced memory footprint)

∙ PyErrorLog for error logging through the Python logging module

∙ Element.getroottree() returns an ElementTree for the root node of the document that contains the
element.

∙ ElementTree.getpath(element) returns a simple, absolute XPath expression to find the element in the tree
structure

∙ Error logs have a last_error attribute for convenience

∙ Comment texts can be changed through the API

∙ Formatted output via pretty_print keyword in serialization functions

∙ XSLT can block access to file system and network via XSLTAccessControl

∙ ElementTree.write() no longer serializes in memory (reduced memory footprint)

∙ Speedup of Element.findall(tag) and Element.getiterator(tag)

∙ Support for writing the XML representation of Elements and ElementTrees to Python unicode strings via
etree.tounicode()

∙ Support for writing XSLT results to Python unicode strings via unicode()

∙ Parsing a unicode string no longer copies the string (reduced memory footprint)

∙ Parsing file-like objects reads chunks rather than the whole file (reduced memory footprint)

∙ Parsing StringIO objects from the start avoids copying the string (reduced memory footprint)

∙ Read-only ’docinfo’ attribute in ElementTree class holds DOCTYPE information, original encoding and
XML version as seen by the parser

∙ etree module can be compiled without libxslt by commenting out the line include "xslt.pxi" near
the end of the etree.pyx source file

∙ Better error messages in parser exceptions

∙ Error reporting also works in XSLT

∙ Support for custom document loaders (URI resolvers) in parsers and XSLT, resolvers are registered at parser
level

∙ Implementation of exslt:regexp for XSLT based on the Python ’re’ module, enabled by default, can be
switched off with ’regexp=False’ keyword argument

∙ Support for exslt extensions (libexslt) and libxslt extra functions (node-set, document, write, output)

241

1.0 (2006-06-01)

∙ Substantial speedup in XPath.evaluate()

∙ HTMLParser for parsing (broken) HTML

∙ XMLDTDID function parses XML into tuple (root node, ID dict) based on xml:id implementation of
libxml2 (as opposed to ET compatible XMLID)

Bugs fixed

∙ Memory leak in Element.__setitem__

∙ Memory leak in Element.attrib.items() and Element.attrib.values()

∙ Memory leak in XPath extension functions

∙ Memory leak in unicode related setup code

∙ Element now raises ValueError on empty tag names

∙ Namespace fixing after moving elements between documents could fail if the source document was freed
too early

∙ Setting namespace-less tag names on namespaced elements (’{ns}t’ -> ’t’) didn’t reset the namespace

∙ Unknown constants from newer libxml2 versions could raise exceptions in the error handlers

∙ lxml.etree compiles much faster

∙ On libxml2 <= 2.6.22, parsing strings with encoding declaration could fail in certain cases

∙ Document reference in ElementTree objects was not updated when the root element was moved to a different
document

∙ Running absolute XPath expressions on an Element now evaluates against the root tree

∙ Evaluating absolute XPath expressions (/*) on an ElementTree could fail

∙ Crashes when calling XSLT, RelaxNG, etc. with uninitialized ElementTree objects

∙ Removed public function initThreadLogging(), replaced by more general initThread() which
fixes a number of setup problems in threads

∙ Memory leak when using iconv encoders in tostring/write

∙ Deep copying Elements and ElementTrees maintains the document information

∙ Serialization functions raise LookupError for unknown encodings

∙ Memory deallocation crash resulting from deep copying elements

∙ Some ElementTree methods could crash if the root node was not initialized (neither file nor element passed
to the constructor)

∙ Element/SubElement failed to set attribute namespaces from passed attrib dictionary

∙ tostring() adds an XML declaration for non-ASCII encodings

∙ tostring() failed to serialize encodings that contain 0-bytes

∙ ElementTree.xpath() and XPathDocumentEvaluator were not using the ElementTree root node as reference
point

242

0.9.1 (2006-03-30)

∙ Calling document(’’) in XSLT failed to return the stylesheet

0.9.2 (2006-05-10)

Features added

∙ Speedup for Element.makeelement(): the new element reuses the original libxml2 document instead of
creating a new empty one

∙ Speedup for reversed() iteration over element children (Py2.4+ only)

∙ ElementTree compatible QName class

∙ RelaxNG and XMLSchema accept any Element, not only ElementTrees

Bugs fixed

∙ str(xslt_result) was broken for XSLT output other than UTF-8

∙ Memory leak if write_c14n fails to write the file after conversion

∙ Crash in XMLSchema and RelaxNG when passing non-schema documents

∙ Memory leak in RelaxNG() when RelaxNGParseError is raised

0.9.1 (2006-03-30)

Features added

∙ lxml.sax.ElementTreeContentHandler checks closing elements and raises SaxError on mismatch

∙ lxml.sax.ElementTreeContentHandler supports namespace-less SAX events (startElement, endElement) and
defaults to empty attributes (keyword argument)

∙ Speedup for repeatedly accessing element tag names

∙ Minor API performance improvements

Bugs fixed

∙ Memory deallocation bug when using XSLT output method “html”

∙ sax.py was handling UTF-8 encoded tag names where it shouldn’t

∙ lxml.tests package will no longer be installed (is still in source tar)

243

0.8 (2005-11-03)

0.9 (2006-03-20)

Features added

∙ Error logging API for libxml2 error messages

∙ Various performance improvements

∙ Benchmark script for lxml, ElementTree and cElementTree

∙ Support for registering extension functions through new FunctionNamespace class (see doc/extensions.txt)

∙ ETXPath class for XPath expressions in ElementTree notation (’//{ns}tag’)

∙ Support for variables in XPath expressions (also in XPath class)

∙ XPath class for compiled XPath expressions

∙ XMLID module level function (ElementTree compatible)

∙ XMLParser API for customized libxml2 parser configuration

∙ Support for custom Element classes through new Namespace API (see doc/namespace_extensions.txt)

∙ Common exception base class LxmlError for module exceptions

∙ real iterator support in iter(Element), Element.getiterator()

∙ XSLT objects are callable, result trees support str()

∙ Added MANIFEST.in for easier creation of RPM files.

∙ ’getparent’ method on elements allows navigation to an element’s parent element.

∙ Python core compatible SAX tree builder and SAX event generator. See doc/sax.txt for more information.

Bugs fixed

∙ Segfaults and memory leaks in various API functions of Element

∙ Segfault in XSLT.tostring()

∙ ElementTree objects no longer interfere, Elements can be root of different ElementTrees at the same time

∙ document(”) works in XSLT documents read from files (in-memory documents cannot support this due to
libxslt deficiencies)

0.8 (2005-11-03)

Features added

∙ Support for copy.deepcopy() on elements. copy.copy() works also, but does the same thing, and does not
create a shallow copy, as that makes no sense in the context of libxml2 trees. This means a potential
incompatibility with ElementTree, but there’s more chance that it works than if copy.copy() isn’t supported
at all.

244

0.7 (2005-06-15)

∙ Increased compatibility with (c)ElementTree; .parse() on ElementTree is supported and parsing of gzipped
XML files works.

∙ implemented index() on elements, allowing one to find the index of a SubElement.

Bugs fixed

∙ Use xslt-config instead of xml2-config to find out libxml2 directories to take into account a case where
libxslt is installed in a different directory than libxslt.

∙ Eliminate crash condition in iteration when text nodes are changed.

∙ Passing ’None’ to tostring() does not result in a segfault anymore, but an AssertionError.

∙ Some test fixes for Windows.

∙ Raise XMLSyntaxError and XPathSyntaxError instead of plain python syntax errors. This should be less
confusing.

∙ Fixed error with uncaught exception in Pyrex code.

∙ Calling lxml.etree.fromstring(”) throws XMLSyntaxError instead of a segfault.

∙ has_key() works on attrib. ’in’ tests also work correctly on attrib.

∙ INSTALL.txt was saying 2.2.16 instead of 2.6.16 as a supported libxml2 version, as it should.

∙ Passing a UTF-8 encoded string to the XML() function would fail; fixed.

0.7 (2005-06-15)

Features added

∙ parameters (XPath expressions) can be passed to XSLT using keyword parameters.

∙ Simple XInclude support. Calling the xinclude() method on a tree will process any XInclude statements in
the document.

∙ XMLSchema support. Use the XMLSchema class or the convenience xmlschema() method on a tree to do
XML Schema (XSD) validation.

∙ Added convenience xslt() method on tree. This is less efficient than the XSLT object, but makes it easier to
write quick code.

∙ Added convenience relaxng() method on tree. This is less efficient than the RelaxNG object, but makes it
easier to write quick code.

∙ Make it possible to use XPathEvaluator with elements as well. The XPathEvaluator in this case will retain
the element so multiple XPath queries can be made against one element efficiently. This replaces the second
argument to the .evaluate() method that existed previously.

∙ Allow registerNamespace() to be called on an XPathEvaluator, after creation, to add additional namespaces.
Also allow registerNamespaces(), which does the same for a namespace dictionary.

∙ Add ’prefix’ attribute to element to be able to read prefix information. This is entirely read-only.

∙ It is possible to supply an extra nsmap keyword parameter to the Element() and SubElement() constructors,

245

0.5 (2005-04-08)

which supplies a prefix to namespace URI mapping. This will create namespace prefix declarations on these
elements and these prefixes will show up in XML serialization.

Bugs fixed

∙ Killed yet another memory management related bug: trees created using newDoc would not get a libxml2-
level dictionary, which caused problems when deallocating these documents later if they contained a node
that came from a document with a dictionary.

∙ Moving namespaced elements between documents was problematic as references to the original document
would remain. This has been fixed by applying xmlReconciliateNs() after each move operation.

∙ Can pass None to ’dump()’ without segfaults.

∙ tostring() works properly for non-root elements as well.

∙ Cleaned out the tostring() method so it should handle encoding correctly.

∙ Cleaned out the ElementTree.write() method so it should handle encoding correctly. Writing directly to a
file should also be faster, as there is no need to go through a Python string in that case. Made sure the test
cases test both serializing to StringIO as well as serializing to a real file.

0.6 (2005-05-14)

Features added

∙ Changed setup.py so that library_dirs is also guessed. This should help with compilation on the Mac OS X
platform, where otherwise the wrong library (shipping with the OS) could be picked up.

∙ Tweaked setup.py so that it picks up the version from version.txt.

Bugs fixed

∙ Do the right thing when handling namespaced attributes.

∙ fix bug where tostring() moved nodes into new documents. tostring() had very nasty side-effects before this
fix, sorry!

0.5.1 (2005-04-09)

∙ Python 2.2 compatibility fixes.

∙ unicode fixes in Element() and Comment() as well as XML(); unicode input wasn’t properly being UTF-8
encoded.

0.5 (2005-04-08)

Initial public release.

246

Appendix B

Generated API documentation

247

Package lxml

Package lxml

Modules

∙ ElementInclude: Limited XInclude support for the ElementTree package.
(Section B, p. 250)

∙ builder: The E Element factory for generating XML documents.
(Section B, p. 252)

∙ cssselect: CSS Selectors based on XPath.
(Section B, p. 276)

∙ doctestcompare: lxml-based doctest output comparison.
(Section B, p. 281)

∙ etree: The lxml.etree module implements the extended ElementTree API for XML.
(Section B, p. 285)

∙ html: The lxml.html tool set for HTML handling.
(Section B, p. 417)

– ElementSoup: Legacy interface to the BeautifulSoup HTML parser.
(Section B, p. 422)

– _setmixin (Section ??, p. ??)
– builder: A set of HTML generator tags for building HTML documents.

(Section B, p. 423)
– clean: A cleanup tool for HTML.

(Section B, p. 426)
– defs (Section B, p. 430)
– diff (Section B, p. 432)
– formfill (Section B, p. 433)
– html5parser: An interface to html5lib that mimics the lxml.html interface.

(Section B, p. 435)
– soupparser: External interface to the BeautifulSoup HTML parser.

(Section B, p. 438)
– usedoctest: Doctest module for HTML comparison.

(Section B, p. 439)
∙ includes (Section B, p. 440)
∙ isoschematron: The lxml.isoschematron package implements ISO Schematron support on top of

the pure-xslt ’skeleton’ implementation.
(Section B, p. 441)

∙ objectify: The lxml.objectify module implements a Python object API for XML. It is based on
lxml.etree.
(Section B, p. 445)

∙ pyclasslookup (Section B, p. 481)
∙ sax: SAX-based adapter to copy trees from/to the Python standard library.

(Section B, p. 482)
∙ usedoctest: Doctest module for XML comparison.

(Section B, p. 489)

Functions

get_include()

Returns a list of header include paths (for lxml itself, libxml2 and libxslt) needed to compile C
code against lxml if it was built with statically linked libraries.

248

Variables Package lxml

Variables
Name Description

__package__ Value: None

249

Class FatalIncludeError Module lxml.ElementInclude

Module lxml.ElementInclude

Limited XInclude support for the ElementTree package.

While lxml.etree has full support for XInclude (see etree.ElementTree.xinclude()), this module pro-
vides a simpler, pure Python, ElementTree compatible implementation that supports a simple form of custom URL
resolvers.

Functions

default_loader(href, parse, encoding=None)

include(elem, loader=None, base_url=None)

Variables
Name Description

XINCLUDE Value:
’{http://www.w3.org/2001/XInclude}’

XINCLUDE_INCLUDE Value:
’{http://www.w3.org/2001/XInclude}include’

XINCLUDE_FALLBACK Value:
’{http://www.w3.org/2001/XInclude}fallback’

__package__ Value: ’lxml’

Class FatalIncludeError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

object

exceptions.BaseException

exceptions.Exception

exceptions.StandardError

exceptions.SyntaxError

lxml.etree.LxmlSyntaxError

lxml.ElementInclude.FatalIncludeError

250

Class FatalIncludeError Module lxml.ElementInclude

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.SyntaxError

__new__(), __str__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.SyntaxError
filename, lineno, msg, offset, print_file_and_line, text
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
Inherited from lxml.etree.LxmlSyntaxError (Section B)
__qualname__

251

Class str Module lxml.builder

Module lxml.builder

The E Element factory for generating XML documents.

Functions

callable(f)

Variables

Name Description
E Value: ElementMaker()
__package__ Value: ’lxml’

Class str

object

basestring

str

Known Subclasses: lxml.etree._ElementStringResult, lxml.html.diff.token

str(object=”) -> string

Return a nice string representation of the object. If the argument is a string, the return value is
the same object.

Methods

__add__(x, y)

x+y

__contains__(x, y)

y in x

252

Class str Module lxml.builder

__eq__(x, y)

x==y

__format__(S, format_spec)

Return a formatted version of S as described by format_spec. Return Value
string

Overrides: object.__format__

__ge__(x, y)

x>=y

__getattribute__(...)

x.__getattribute__(’name’) <==> x.name Overrides: object.__getattribute__

__getitem__(x, y)

x[y]

__getnewargs__(...)

__getslice__(x, i, j)

x[i:j]

Use of negative indices is not supported.

__gt__(x, y)

x>y

253

Class str Module lxml.builder

__hash__(x)

hash(x) Overrides: object.__hash__

__le__(x, y)

x<=y

__len__(x)

len(x)

__lt__(x, y)

x<y

__mod__(x, y)

x%y

__mul__(x, n)

x*n

__ne__(x, y)

x!=y

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

__repr__(x)

repr(x) Overrides: object.__repr__

254

Class str Module lxml.builder

__rmod__(x, y)

y%x

__rmul__(x, n)

n*x

__sizeof__(S)

size of object in memory, in bytes Return Value
size of S in memory, in bytes

Overrides: object.__sizeof__

__str__(x)

str(x) Overrides: object.__str__

capitalize(S)

Return a copy of the string S with only its first character capitalized. Return
Value

string

center(S, width, fillchar=...)

Return S centered in a string of length width. Padding is done using the specified
fill character (default is a space) Return Value

string

count(S, sub, start=..., end=...)

Return the number of non-overlapping occurrences of substring sub in string
S[start:end]. Optional arguments start and end are interpreted as in slice
notation. Return Value

int

255

Class str Module lxml.builder

decode(S, encoding=..., errors=...)

Decodes S using the codec registered for encoding. encoding defaults to the
default encoding. errors may be given to set a different error handling scheme.
Default is ’strict’ meaning that encoding errors raise a UnicodeDecodeError.
Other possible values are ’ignore’ and ’replace’ as well as any other name
registered with codecs.register_error that is able to handle
UnicodeDecodeErrors. Return Value

object

encode(S, encoding=..., errors=...)

Encodes S using the codec registered for encoding. encoding defaults to the
default encoding. errors may be given to set a different error handling scheme.
Default is ’strict’ meaning that encoding errors raise a UnicodeEncodeError.
Other possible values are ’ignore’, ’replace’ and ’xmlcharrefreplace’ as well as
any other name registered with codecs.register_error that is able to handle
UnicodeEncodeErrors. Return Value

object

endswith(S, suffix, start=..., end=...)

Return True if S ends with the specified suffix, False otherwise. With optional
start, test S beginning at that position. With optional end, stop comparing S at
that position. suffix can also be a tuple of strings to try. Return Value

bool

expandtabs(S, tabsize=...)

Return a copy of S where all tab characters are expanded using spaces. If tabsize
is not given, a tab size of 8 characters is assumed. Return Value

string

find(S, sub, start=... , end=...)

Return the lowest index in S where substring sub is found, such that sub is
contained within S[start:end]. Optional arguments start and end are interpreted
as in slice notation.

Return -1 on failure. Return Value
int

256

Class str Module lxml.builder

format(S, *args, **kwargs)

Return a formatted version of S, using substitutions from args and kwargs. The
substitutions are identified by braces (’{’ and ’}’). Return Value

string

index(S, sub, start=... , end=...)

Like S.find() but raise ValueError when the substring is not found. Return
Value

int

isalnum(S)

Return True if all characters in S are alphanumeric and there is at least one
character in S, False otherwise. Return Value

bool

isalpha(S)

Return True if all characters in S are alphabetic and there is at least one character
in S, False otherwise. Return Value

bool

isdigit(S)

Return True if all characters in S are digits and there is at least one character in
S, False otherwise. Return Value

bool

islower(S)

Return True if all cased characters in S are lowercase and there is at least one
cased character in S, False otherwise. Return Value

bool

257

Class str Module lxml.builder

isspace(S)

Return True if all characters in S are whitespace and there is at least one
character in S, False otherwise. Return Value

bool

istitle(S)

Return True if S is a titlecased string and there is at least one character in S, i.e.
uppercase characters may only follow uncased characters and lowercase
characters only cased ones. Return False otherwise. Return Value

bool

isupper(S)

Return True if all cased characters in S are uppercase and there is at least one
cased character in S, False otherwise. Return Value

bool

join(S, iterable)

Return a string which is the concatenation of the strings in the iterable. The
separator between elements is S. Return Value

string

ljust(S, width, fillchar=...)

Return S left-justified in a string of length width. Padding is done using the
specified fill character (default is a space). Return Value

string

lower(S)

Return a copy of the string S converted to lowercase. Return Value
string

258

Class str Module lxml.builder

lstrip(S, chars=...)

Return a copy of the string S with leading whitespace removed. If chars is given
and not None, remove characters in chars instead. If chars is unicode, S will be
converted to unicode before stripping Return Value

string or unicode

partition(S, sep)

Search for the separator sep in S, and return the part before it, the separator
itself, and the part after it. If the separator is not found, return S and two empty
strings. Return Value

(head, sep, tail)

replace(S, old, new, count=...)

Return a copy of string S with all occurrences of substring old replaced by new.
If the optional argument count is given, only the first count occurrences are
replaced. Return Value

string

rfind(S, sub, start=... , end=...)

Return the highest index in S where substring sub is found, such that sub is
contained within S[start:end]. Optional arguments start and end are interpreted
as in slice notation.

Return -1 on failure. Return Value
int

rindex(S, sub, start=... , end=...)

Like S.rfind() but raise ValueError when the substring is not found. Return
Value

int

259

Class str Module lxml.builder

rjust(S, width, fillchar=...)

Return S right-justified in a string of length width. Padding is done using the
specified fill character (default is a space) Return Value

string

rpartition(S, sep)

Search for the separator sep in S, starting at the end of S, and return the part
before it, the separator itself, and the part after it. If the separator is not found,
return two empty strings and S. Return Value

(head, sep, tail)

rsplit(S, sep=... , maxsplit=...)

Return a list of the words in the string S, using sep as the delimiter string,
starting at the end of the string and working to the front. If maxsplit is given, at
most maxsplit splits are done. If sep is not specified or is None, any whitespace
string is a separator. Return Value

list of strings

rstrip(S, chars=...)

Return a copy of the string S with trailing whitespace removed. If chars is given
and not None, remove characters in chars instead. If chars is unicode, S will be
converted to unicode before stripping Return Value

string or unicode

split(S, sep=... , maxsplit=...)

Return a list of the words in the string S, using sep as the delimiter string. If
maxsplit is given, at most maxsplit splits are done. If sep is not specified or is
None, any whitespace string is a separator and empty strings are removed from
the result. Return Value

list of strings

260

Class str Module lxml.builder

splitlines(S, keepends=False)

Return a list of the lines in S, breaking at line boundaries. Line breaks are not
included in the resulting list unless keepends is given and true. Return Value

list of strings

startswith(S, prefix, start=..., end=...)

Return True if S starts with the specified prefix, False otherwise. With optional
start, test S beginning at that position. With optional end, stop comparing S at
that position. prefix can also be a tuple of strings to try. Return Value

bool

strip(S, chars=...)

Return a copy of the string S with leading and trailing whitespace removed. If
chars is given and not None, remove characters in chars instead. If chars is
unicode, S will be converted to unicode before stripping Return Value

string or unicode

swapcase(S)

Return a copy of the string S with uppercase characters converted to lowercase
and vice versa. Return Value

string

title(S)

Return a titlecased version of S, i.e. words start with uppercase characters, all
remaining cased characters have lowercase. Return Value

string

261

Class str Module lxml.builder

translate(S, table, deletechars=...)

Return a copy of the string S, where all characters occurring in the optional
argument deletechars are removed, and the remaining characters have been
mapped through the given translation table, which must be a string of length 256
or None. If the table argument is None, no translation is applied and the
operation simply removes the characters in deletechars. Return Value

string

upper(S)

Return a copy of the string S converted to uppercase. Return Value
string

zfill(S, width)

Pad a numeric string S with zeros on the left, to fill a field of the specified width.
The string S is never truncated. Return Value

string

Inherited from object

__delattr__(), __init__(), __reduce__(), __reduce_ex__(), __setattr__(), __subclasshook__()

Properties

Name Description
Inherited from object
__class__

Class str

object

basestring

str

Known Subclasses: lxml.etree._ElementStringResult, lxml.html.diff.token

str(object=”) -> string

Return a nice string representation of the object. If the argument is a string, the return value is
the same object.

262

Class str Module lxml.builder

Methods

__add__(x, y)

x+y

__contains__(x, y)

y in x

__eq__(x, y)

x==y

__format__(S, format_spec)

Return a formatted version of S as described by format_spec. Return Value
string

Overrides: object.__format__

__ge__(x, y)

x>=y

__getattribute__(...)

x.__getattribute__(’name’) <==> x.name Overrides: object.__getattribute__

__getitem__(x, y)

x[y]

__getnewargs__(...)

263

Class str Module lxml.builder

__getslice__(x, i, j)

x[i:j]

Use of negative indices is not supported.

__gt__(x, y)

x>y

__hash__(x)

hash(x) Overrides: object.__hash__

__le__(x, y)

x<=y

__len__(x)

len(x)

__lt__(x, y)

x<y

__mod__(x, y)

x%y

__mul__(x, n)

x*n

264

Class str Module lxml.builder

__ne__(x, y)

x!=y

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

__repr__(x)

repr(x) Overrides: object.__repr__

__rmod__(x, y)

y%x

__rmul__(x, n)

n*x

__sizeof__(S)

size of object in memory, in bytes Return Value
size of S in memory, in bytes

Overrides: object.__sizeof__

__str__(x)

str(x) Overrides: object.__str__

capitalize(S)

Return a copy of the string S with only its first character capitalized. Return
Value

string

265

Class str Module lxml.builder

center(S, width, fillchar=...)

Return S centered in a string of length width. Padding is done using the specified
fill character (default is a space) Return Value

string

count(S, sub, start=..., end=...)

Return the number of non-overlapping occurrences of substring sub in string
S[start:end]. Optional arguments start and end are interpreted as in slice
notation. Return Value

int

decode(S, encoding=..., errors=...)

Decodes S using the codec registered for encoding. encoding defaults to the
default encoding. errors may be given to set a different error handling scheme.
Default is ’strict’ meaning that encoding errors raise a UnicodeDecodeError.
Other possible values are ’ignore’ and ’replace’ as well as any other name
registered with codecs.register_error that is able to handle
UnicodeDecodeErrors. Return Value

object

encode(S, encoding=..., errors=...)

Encodes S using the codec registered for encoding. encoding defaults to the
default encoding. errors may be given to set a different error handling scheme.
Default is ’strict’ meaning that encoding errors raise a UnicodeEncodeError.
Other possible values are ’ignore’, ’replace’ and ’xmlcharrefreplace’ as well as
any other name registered with codecs.register_error that is able to handle
UnicodeEncodeErrors. Return Value

object

endswith(S, suffix, start=..., end=...)

Return True if S ends with the specified suffix, False otherwise. With optional
start, test S beginning at that position. With optional end, stop comparing S at
that position. suffix can also be a tuple of strings to try. Return Value

bool

266

Class str Module lxml.builder

expandtabs(S, tabsize=...)

Return a copy of S where all tab characters are expanded using spaces. If tabsize
is not given, a tab size of 8 characters is assumed. Return Value

string

find(S, sub, start=... , end=...)

Return the lowest index in S where substring sub is found, such that sub is
contained within S[start:end]. Optional arguments start and end are interpreted
as in slice notation.

Return -1 on failure. Return Value
int

format(S, *args, **kwargs)

Return a formatted version of S, using substitutions from args and kwargs. The
substitutions are identified by braces (’{’ and ’}’). Return Value

string

index(S, sub, start=... , end=...)

Like S.find() but raise ValueError when the substring is not found. Return
Value

int

isalnum(S)

Return True if all characters in S are alphanumeric and there is at least one
character in S, False otherwise. Return Value

bool

isalpha(S)

Return True if all characters in S are alphabetic and there is at least one character
in S, False otherwise. Return Value

bool

267

Class str Module lxml.builder

isdigit(S)

Return True if all characters in S are digits and there is at least one character in
S, False otherwise. Return Value

bool

islower(S)

Return True if all cased characters in S are lowercase and there is at least one
cased character in S, False otherwise. Return Value

bool

isspace(S)

Return True if all characters in S are whitespace and there is at least one
character in S, False otherwise. Return Value

bool

istitle(S)

Return True if S is a titlecased string and there is at least one character in S, i.e.
uppercase characters may only follow uncased characters and lowercase
characters only cased ones. Return False otherwise. Return Value

bool

isupper(S)

Return True if all cased characters in S are uppercase and there is at least one
cased character in S, False otherwise. Return Value

bool

join(S, iterable)

Return a string which is the concatenation of the strings in the iterable. The
separator between elements is S. Return Value

string

268

Class str Module lxml.builder

ljust(S, width, fillchar=...)

Return S left-justified in a string of length width. Padding is done using the
specified fill character (default is a space). Return Value

string

lower(S)

Return a copy of the string S converted to lowercase. Return Value
string

lstrip(S, chars=...)

Return a copy of the string S with leading whitespace removed. If chars is given
and not None, remove characters in chars instead. If chars is unicode, S will be
converted to unicode before stripping Return Value

string or unicode

partition(S, sep)

Search for the separator sep in S, and return the part before it, the separator
itself, and the part after it. If the separator is not found, return S and two empty
strings. Return Value

(head, sep, tail)

replace(S, old, new, count=...)

Return a copy of string S with all occurrences of substring old replaced by new.
If the optional argument count is given, only the first count occurrences are
replaced. Return Value

string

rfind(S, sub, start=... , end=...)

Return the highest index in S where substring sub is found, such that sub is
contained within S[start:end]. Optional arguments start and end are interpreted
as in slice notation.

Return -1 on failure. Return Value
int

269

Class str Module lxml.builder

rindex(S, sub, start=... , end=...)

Like S.rfind() but raise ValueError when the substring is not found. Return
Value

int

rjust(S, width, fillchar=...)

Return S right-justified in a string of length width. Padding is done using the
specified fill character (default is a space) Return Value

string

rpartition(S, sep)

Search for the separator sep in S, starting at the end of S, and return the part
before it, the separator itself, and the part after it. If the separator is not found,
return two empty strings and S. Return Value

(head, sep, tail)

rsplit(S, sep=... , maxsplit=...)

Return a list of the words in the string S, using sep as the delimiter string,
starting at the end of the string and working to the front. If maxsplit is given, at
most maxsplit splits are done. If sep is not specified or is None, any whitespace
string is a separator. Return Value

list of strings

rstrip(S, chars=...)

Return a copy of the string S with trailing whitespace removed. If chars is given
and not None, remove characters in chars instead. If chars is unicode, S will be
converted to unicode before stripping Return Value

string or unicode

270

Class str Module lxml.builder

split(S, sep=... , maxsplit=...)

Return a list of the words in the string S, using sep as the delimiter string. If
maxsplit is given, at most maxsplit splits are done. If sep is not specified or is
None, any whitespace string is a separator and empty strings are removed from
the result. Return Value

list of strings

splitlines(S, keepends=False)

Return a list of the lines in S, breaking at line boundaries. Line breaks are not
included in the resulting list unless keepends is given and true. Return Value

list of strings

startswith(S, prefix, start=..., end=...)

Return True if S starts with the specified prefix, False otherwise. With optional
start, test S beginning at that position. With optional end, stop comparing S at
that position. prefix can also be a tuple of strings to try. Return Value

bool

strip(S, chars=...)

Return a copy of the string S with leading and trailing whitespace removed. If
chars is given and not None, remove characters in chars instead. If chars is
unicode, S will be converted to unicode before stripping Return Value

string or unicode

swapcase(S)

Return a copy of the string S with uppercase characters converted to lowercase
and vice versa. Return Value

string

title(S)

Return a titlecased version of S, i.e. words start with uppercase characters, all
remaining cased characters have lowercase. Return Value

string

271

Class ElementMaker Module lxml.builder

translate(S, table, deletechars=...)

Return a copy of the string S, where all characters occurring in the optional
argument deletechars are removed, and the remaining characters have been
mapped through the given translation table, which must be a string of length 256
or None. If the table argument is None, no translation is applied and the
operation simply removes the characters in deletechars. Return Value

string

upper(S)

Return a copy of the string S converted to uppercase. Return Value
string

zfill(S, width)

Pad a numeric string S with zeros on the left, to fill a field of the specified width.
The string S is never truncated. Return Value

string

Inherited from object

__delattr__(), __init__(), __reduce__(), __reduce_ex__(), __setattr__(), __subclasshook__()

Properties

Name Description
Inherited from object
__class__

Class ElementMaker

object

lxml.builder.ElementMaker

Element generator factory.

Unlike the ordinary Element factory, the E factory allows you to pass in more than just a tag
and some optional attributes; you can also pass in text and other elements. The text is added as
either text or tail attributes, and elements are inserted at the right spot. Some small examples:

>>> from lxml import etree as ET
>>> from lxml.builder import E

272

Class ElementMaker Module lxml.builder

>>> ET.tostring(E("tag"))
’<tag/>’
>>> ET.tostring(E("tag", "text"))
’<tag>text</tag>’
>>> ET.tostring(E("tag", "text", key="value"))
’<tag key="value">text</tag>’
>>> ET.tostring(E("tag", E("subtag", "text"), "tail"))
’<tag><subtag>text</subtag>tail</tag>’

For simple tags, the factory also allows you to write E.tag(...) instead of E(’tag’,
...):

>>> ET.tostring(E.tag())
’<tag/>’
>>> ET.tostring(E.tag("text"))
’<tag>text</tag>’
>>> ET.tostring(E.tag(E.subtag("text"), "tail"))
’<tag><subtag>text</subtag>tail</tag>’

Here’s a somewhat larger example; this shows how to generate HTML documents, using a mix
of prepared factory functions for inline elements, nested E.tag calls, and embedded XHTML
fragments:

some common inline elements
A = E.a
I = E.i
B = E.b

def CLASS(v):
helper function, ’class’ is a reserved word
return {’class’: v}

page = (
E.html(

E.head(
E.title("This is a sample document")

),
E.body(

E.h1("Hello!", CLASS("title")),
E.p("This is a paragraph with ", B("bold"), " text in it!"),
E.p("This is another paragraph, with a ",

A("link", href="http://www.python.org"), "."),
E.p("Here are some reservered characters: <spam&egg>."),
ET.XML("<p>And finally, here is an embedded XHTML fragment.</p>"),

)
)

)

273

Class ElementMaker Module lxml.builder

print ET.tostring(page)

Here’s a prettyprinted version of the output from the above script:

<html>
<head>

<title>This is a sample document</title>
</head>
<body>

<h1 class="title">Hello!</h1>
<p>This is a paragraph with bold text in it!</p>
<p>This is another paragraph, with link.</p>
<p>Here are some reservered characters: <spam&egg>.</p>
<p>And finally, here is an embedded XHTML fragment.</p>

</body>
</html>

For namespace support, you can pass a namespace map (nsmap) and/or a specific target
namespace to the ElementMaker class:

>>> E = ElementMaker(namespace="http://my.ns/")
>>> print(ET.tostring(E.test))
<test xmlns="http://my.ns/"/>

>>> E = ElementMaker(namespace="http://my.ns/", nsmap={’p’:’http://my.ns/’})
>>> print(ET.tostring(E.test))
<p:test xmlns:p="http://my.ns/"/>

Methods

__init__(self, typemap=None, namespace=None, nsmap=None,
makeelement=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, tag, *children, **attrib)

__getattr__(self, tag)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

274

Class ElementMaker Module lxml.builder

Name Description
Inherited from object
__class__

275

Module lxml.cssselect

Module lxml.cssselect

CSS Selectors based on XPath.

This module supports selecting XML/HTML tags based on CSS selectors. See the CSSSelector
class for details.

This is a thin wrapper around cssselect 0.7 or later.

Class SelectorSyntaxError

object

exceptions.BaseException

exceptions.Exception

cssselect.parser.SelectorError

object

exceptions.BaseException

exceptions.Exception

exceptions.StandardError

exceptions.SyntaxError

cssselect.parser.SelectorSyntaxError

Parsing a selector that does not match the grammar.

Methods

Inherited from exceptions.SyntaxError

__init__(), __new__(), __str__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

276

Class ExpressionError Module lxml.cssselect

Properties

Name Description
Inherited from exceptions.SyntaxError
filename, lineno, msg, offset, print_file_and_line, text
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class ExpressionError

object

exceptions.BaseException

exceptions.Exception

cssselect.parser.SelectorError

object

exceptions.BaseException

exceptions.Exception

exceptions.StandardError

exceptions.RuntimeError

cssselect.xpath.ExpressionError

Unknown or unsupported selector (eg. pseudo-class).

Methods

Inherited from exceptions.RuntimeError

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

277

Class SelectorError Module lxml.cssselect

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class SelectorError

object

exceptions.BaseException

exceptions.Exception

cssselect.parser.SelectorError

Known Subclasses: cssselect.xpath.ExpressionError, cssselect.parser.SelectorSyntaxError

Common parent for :class:‘SelectorSyntaxError‘ and
:class:‘ExpressionError‘.

You can just use ‘‘except SelectorError:‘‘ when calling
:meth:‘~GenericTranslator.css_to_xpath‘ and handle both exceptions types.

Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

278

Class CSSSelector Module lxml.cssselect

Class CSSSelector

object

lxml.etree._XPathEvaluatorBase

lxml.etree.XPath

lxml.cssselect.CSSSelector

A CSS selector.

Usage:

>>> from lxml import etree, cssselect
>>> select = cssselect.CSSSelector("a tag > child")

>>> root = etree.XML("<a><c/><tag><child>TEXT</child></tag>")
>>> [el.tag for el in select(root)]
[’child’]

To use CSS namespaces, you need to pass a prefix-to-namespace mapping as namespaces
keyword argument:

>>> rdfns = ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
>>> select_ns = cssselect.CSSSelector(’root > rdf|Description’,
... namespaces={’rdf’: rdfns})

>>> rdf = etree.XML((
... ’<root xmlns:rdf="%s">’
... ’<rdf:Description>blah</rdf:Description>’
... ’</root>’) % rdfns)
>>> [(el.tag, el.text) for el in select_ns(rdf)]
[(’{http://www.w3.org/1999/02/22-rdf-syntax-ns#}Description’, ’blah’)]

Methods

__init__(self, css, namespaces=None, translator=’xml’)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__repr__(self)

repr(x) Overrides: object.__repr__ extit(inherited documentation)

Inherited from lxml.etree.XPath(Section B)

__call__(), __new__()

279

Class CSSSelector Module lxml.cssselect

Inherited from lxml.etree._XPathEvaluatorBase

evaluate()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree.XPath (Section B)
path
Inherited from lxml.etree._XPathEvaluatorBase
error_log
Inherited from object
__class__

280

Module lxml.doctestcompare

Module lxml.doctestcompare

lxml-based doctest output comparison.

Note: normally, you should just import the lxml.usedoctest and lxml.html.usedoctest
modules from within a doctest, instead of this one:

>>> import lxml.usedoctest # for XML output

>>> import lxml.html.usedoctest # for HTML output

To use this module directly, you must call lxmldoctest.install(), which will cause
doctest to use this in all subsequent calls.

This changes the way output is checked and comparisons are made for XML or HTML-like
content.

XML or HTML content is noticed because the example starts with < (it’s HTML if it starts
with <html). You can also use the PARSE_HTML and PARSE_XML flags to force parsing.

Some rough wildcard-like things are allowed. Whitespace is generally ignored (except in at-
tributes). In text (attributes and text in the body) you can use ... as a wildcard. In an example
it also matches any trailing tags in the element, though it does not match leading tags. You may
create a tag <any> or include an any attribute in the tag. An any tag matches any tag, while
the attribute matches any and all attributes.

When a match fails, the reformatted example and gotten text is displayed (indented), and a
rough diff-like output is given. Anything marked with - is in the output but wasn’t supposed
to be, and similarly + means its in the example but wasn’t in the output.

You can disable parsing on one line with # doctest:+NOPARSE_MARKUP

Functions

install(html=False)

Install doctestcompare for all future doctests.

If html is true, then by default the HTML parser will be used; otherwise the
XML parser is used.

temp_install(html=False, del_module=None)

Use this inside a doctest to enable this checker for this doctest only.

If html is true, then by default the HTML parser will be used; otherwise the
XML parser is used.

281

Class LXMLOutputChecker Module lxml.doctestcompare

Variables

Name Description
PARSE_HTML Value: 1024
PARSE_XML Value: 2048
NOPARSE_MARKUP Value: 4096

Class LXMLOutputChecker

doctest.OutputChecker

lxml.doctestcompare.LXMLOutputChecker

Known Subclasses: lxml.doctestcompare.LHTMLOutputChecker

Methods

get_default_parser(self)

check_output(self, want, got, optionflags)

Return True iff the actual output from an example (got) matches the expected
output (want). These strings are always considered to match if they are
identical; but depending on what option flags the test runner is using, several
non-exact match types are also possible. See the documentation for
TestRunner for more information about option flags. Overrides:
doctest.OutputChecker.check_output extit(inherited documentation)

get_parser(self, want, got, optionflags)

compare_docs(self, want, got)

text_compare(self, want, got, strip)

tag_compare(self, want, got)

output_difference(self, example, got, optionflags)

Return a string describing the differences between the expected output for a
given example (example) and the actual output (got). optionflags is the
set of option flags used to compare want and got. Overrides:
doctest.OutputChecker.output_difference extit(inherited documentation)

html_empty_tag(self, el, html=True)

282

Class LHTMLOutputChecker Module lxml.doctestcompare

format_doc(self, doc, html, indent, prefix=’’)

format_text(self, text, strip=True)

format_tag(self, el)

format_end_tag(self, el)

collect_diff(self, want, got, html, indent)

collect_diff_tag(self, want, got)

collect_diff_end_tag(self, want, got)

collect_diff_text(self, want, got, strip=True)

Class Variables

Name Description
empty_tags Value: (’param’, ’img’, ’area’,

’br’, ’basefont’, ’input’,
’base...

Class LHTMLOutputChecker

doctest.OutputChecker

lxml.doctestcompare.LXMLOutputChecker

lxml.doctestcompare.LHTMLOutputChecker

Methods

get_default_parser(self)

Overrides: lxml.doctestcompare.LXMLOutputChecker.get_default_parser

Inherited from lxml.doctestcompare.LXMLOutputChecker(Section B)

check_output(), collect_diff(), collect_diff_end_tag(), collect_diff_tag(), collect_diff_text(),
compare_docs(), format_doc(), format_end_tag(), format_tag(), format_text(), get_parser(),
html_empty_tag(), output_difference(), tag_compare(), text_compare()

Class Variables

283

Class LHTMLOutputChecker Module lxml.doctestcompare

Name Description
Inherited from lxml.doctestcompare.LXMLOutputChecker (Section B)
empty_tags

284

Module lxml.etree

Module lxml.etree

The lxml.etree module implements the extended ElementTree API for XML. Version:
2.3.6

Functions

Comment(text=None)

Comment element factory. This factory function creates a special element that
will be serialized as an XML comment.

Element(_tag, attrib=None, nsmap=None, **_extra)

Element factory. This function returns an object implementing the Element
interface.

Also look at the _Element.makeelement() and
_BaseParser.makeelement() methods, which provide a faster way to
create an Element within a specific document or parser context.

ElementTree(element=None, file=None, parser=None)

ElementTree wrapper class.

Entity(name)

Entity factory. This factory function creates a special element that will be
serialized as an XML entity reference or character reference. Note, however, that
entities will not be automatically declared in the document. A document that
uses entity references requires a DTD to define the entities.

285

Functions Module lxml.etree

Extension(module, function_mapping=None, ns=None)

Build a dictionary of extension functions from the functions defined in a module
or the methods of an object.

As second argument, you can pass an additional mapping of attribute names to
XPath function names, or a list of function names that should be taken.

The ns keyword argument accepts a namespace URI for the XPath functions.

FunctionNamespace(ns_uri)

Retrieve the function namespace object associated with the given URI.

Creates a new one if it does not yet exist. A function namespace can only be
used to register extension functions.

HTML(text, parser=None, base_url=None)

Parses an HTML document from a string constant. Returns the root node (or the
result returned by a parser target). This function can be used to embed “HTML
literals” in Python code.

To override the parser with a different HTMLParser you can pass it to the
parser keyword argument.

The base_url keyword argument allows to set the original base URL of the
document to support relative Paths when looking up external entities (DTD,
XInclude, ...).

PI(target, text=None)

ProcessingInstruction element factory. This factory function creates a special
element that will be serialized as an XML processing instruction.

ProcessingInstruction(target, text=None)

ProcessingInstruction element factory. This factory function creates a special
element that will be serialized as an XML processing instruction.

286

Functions Module lxml.etree

SubElement(_parent, _tag, attrib=None, nsmap=None, **_extra)

Subelement factory. This function creates an element instance, and appends it to
an existing element.

XML(text, parser=None, base_url=None)

Parses an XML document or fragment from a string constant. Returns the root
node (or the result returned by a parser target). This function can be used to
embed “XML literals” in Python code, like in

>>> root = XML("<root><test/></root>")
>>> print(root.tag)
root

To override the parser with a different XMLParser you can pass it to the
parser keyword argument.

The base_url keyword argument allows to set the original base URL of the
document to support relative Paths when looking up external entities (DTD,
XInclude, ...).

XMLDTDID(text, parser=None, base_url=None)

Parse the text and return a tuple (root node, ID dictionary). The root node is the
same as returned by the XML() function. The dictionary contains string-element
pairs. The dictionary keys are the values of ID attributes as defined by the DTD.
The elements referenced by the ID are stored as dictionary values.

Note that you must not modify the XML tree if you use the ID dictionary. The
results are undefined.

XMLID(text, parser=None, base_url=None)

Parse the text and return a tuple (root node, ID dictionary). The root node is the
same as returned by the XML() function. The dictionary contains string-element
pairs. The dictionary keys are the values of ’id’ attributes. The elements
referenced by the ID are stored as dictionary values.

287

Functions Module lxml.etree

XPathEvaluator(etree_or_element, namespaces=None, extensions=None,
regexp=True, smart_strings=True)

Creates an XPath evaluator for an ElementTree or an Element.

The resulting object can be called with an XPath expression as argument and
XPath variables provided as keyword arguments.

Additional namespace declarations can be passed with the ’namespace’ keyword
argument. EXSLT regular expression support can be disabled with the ’regexp’
boolean keyword (defaults to True). Smart strings will be returned for string
results unless you pass smart_strings=False.

cleanup_namespaces(tree_or_element)

Remove all namespace declarations from a subtree that are not used by any of
the elements or attributes in that tree.

clear_error_log()

Clear the global error log. Note that this log is already bound to a fixed size.

Note: since lxml 2.2, the global error log is local to a thread and this function
will only clear the global error log of the current thread.

dump(elem, pretty_print=True, with_tail=True)

Writes an element tree or element structure to sys.stdout. This function should
be used for debugging only.

fromstring(text, parser=None, base_url=None)

Parses an XML document or fragment from a string. Returns the root node (or
the result returned by a parser target).

To override the default parser with a different parser you can pass it to the
parser keyword argument.

The base_url keyword argument allows to set the original base URL of the
document to support relative Paths when looking up external entities (DTD,
XInclude, ...).

288

Functions Module lxml.etree

fromstringlist(strings, parser=None)

Parses an XML document from a sequence of strings. Returns the root node (or
the result returned by a parser target).

To override the default parser with a different parser you can pass it to the
parser keyword argument.

get_default_parser()

iselement(element)

Checks if an object appears to be a valid element object.

parse(source, parser=None, base_url=None)

Return an ElementTree object loaded with source elements. If no parser is
provided as second argument, the default parser is used.

The source can be any of the following:

∙ a file name/path

∙ a file object

∙ a file-like object

∙ a URL using the HTTP or FTP protocol

To parse from a string, use the fromstring() function instead.

Note that it is generally faster to parse from a file path or URL than from an open
file object or file-like object. Transparent decompression from gzip compressed
sources is supported (unless explicitly disabled in libxml2).

The base_url keyword allows setting a URL for the document when parsing
from a file-like object. This is needed when looking up external entities (DTD,
XInclude, ...) with relative paths.

289

Functions Module lxml.etree

parseid(source, parser=None)

Parses the source into a tuple containing an ElementTree object and an ID
dictionary. If no parser is provided as second argument, the default parser is
used.

Note that you must not modify the XML tree if you use the ID dictionary. The
results are undefined.

register_namespace(...)

Registers a namespace prefix that newly created Elements in that namespace will
use. The registry is global, and any existing mapping for either the given prefix
or the namespace URI will be removed.

set_default_parser(parser=None)

Set a default parser for the current thread. This parser is used globally whenever
no parser is supplied to the various parse functions of the lxml API. If this
function is called without a parser (or if it is None), the default parser is reset to
the original configuration.

Note that the pre-installed default parser is not thread-safe. Avoid the default
parser in multi-threaded environments. You can create a separate parser for each
thread explicitly or use a parser pool.

set_element_class_lookup(lookup=None)

Set the global default element class lookup method.

290

Functions Module lxml.etree

strip_attributes(tree_or_element, *attribute_names)

Delete all attributes with the provided attribute names from an Element (or
ElementTree) and its descendants.

Attribute names can contain wildcards as in _Element.iter.

Example usage:

strip_attributes(root_element,
’simpleattr’,
’{http://some/ns}attrname’,
’{http://other/ns}*’)

strip_elements(tree_or_element, with_tail=True, *tag_names)

Delete all elements with the provided tag names from a tree or subtree. This will
remove the elements and their entire subtree, including all their attributes, text
content and descendants. It will also remove the tail text of the element unless
you explicitly set the with_tail keyword argument option to False.

Tag names can contain wildcards as in _Element.iter.

Note that this will not delete the element (or ElementTree root element) that you
passed even if it matches. It will only treat its descendants. If you want to include
the root element, check its tag name directly before even calling this function.

Example usage:

strip_elements(some_element,
’simpletagname’, # non-namespaced tag
’{http://some/ns}tagname’, # namespaced tag
’{http://some/other/ns}*’ # any tag from a namespace
lxml.etree.Comment # comments
)

291

Functions Module lxml.etree

strip_tags(tree_or_element, *tag_names)

Delete all elements with the provided tag names from a tree or subtree. This will
remove the elements and their attributes, but not their text/tail content or
descendants. Instead, it will merge the text content and children of the element
into its parent.

Tag names can contain wildcards as in _Element.iter.

Note that this will not delete the element (or ElementTree root element) that you
passed even if it matches. It will only treat its descendants.

Example usage:

strip_tags(some_element,
’simpletagname’, # non-namespaced tag
’{http://some/ns}tagname’, # namespaced tag
’{http://some/other/ns}*’ # any tag from a namespace
Comment # comments (including their text!)
)

292

Functions Module lxml.etree

tostring(element_or_tree, encoding=None, method="xml",
xml_declaration=None, pretty_print=False, with_tail=True,
standalone=None, doctype=None, exclusive=False, with_comments=True,
inclusive_ns_prefixes=None)

Serialize an element to an encoded string representation of its XML tree.

Defaults to ASCII encoding without XML declaration. This behaviour can be
configured with the keyword arguments ’encoding’ (string) and
’xml_declaration’ (bool). Note that changing the encoding to a non UTF-8
compatible encoding will enable a declaration by default.

You can also serialise to a Unicode string without declaration by passing the
unicode function as encoding (or str in Py3), or the name ’unicode’. This
changes the return value from a byte string to an unencoded unicode string.

The keyword argument ’pretty_print’ (bool) enables formatted XML.

The keyword argument ’method’ selects the output method: ’xml’, ’html’, plain
’text’ (text content without tags) or ’c14n’. Default is ’xml’.

The exclusive and with_comments arguments are only used with C14N
output, where they request exclusive and uncommented C14N serialisation
respectively.

Passing a boolean value to the standalone option will output an XML
declaration with the corresponding standalone flag.

The doctype option allows passing in a plain string that will be serialised
before the XML tree. Note that passing in non well-formed content here will
make the XML output non well-formed. Also, an existing doctype in the
document tree will not be removed when serialising an ElementTree instance.

You can prevent the tail text of the element from being serialised by passing the
boolean with_tail option. This has no impact on the tail text of children,
which will always be serialised.

tostringlist(element_or_tree, *args, **kwargs)

Serialize an element to an encoded string representation of its XML tree, stored
in a list of partial strings.

This is purely for ElementTree 1.3 compatibility. The result is a single string
wrapped in a list.

293

Variables Module lxml.etree

tounicode(element_or_tree, method="xml", pretty_print=False,
with_tail=True, doctype=None)

Serialize an element to the Python unicode representation of its XML tree.

Note that the result does not carry an XML encoding declaration and is therefore
not necessarily suited for serialization to byte streams without further treatment.

The boolean keyword argument ’pretty_print’ enables formatted XML.

The keyword argument ’method’ selects the output method: ’xml’, ’html’ or
plain ’text’.

You can prevent the tail text of the element from being serialised by passing the
boolean with_tail option. This has no impact on the tail text of children,
which will always be serialised. Deprecated: use tostring(el,
encoding=’unicode’) instead.

use_global_python_log(log)

Replace the global error log by an etree.PyErrorLog that uses the standard
Python logging package.

Note that this disables access to the global error log from exceptions. Parsers,
XSLT etc. will continue to provide their normal local error log.

Note: prior to lxml 2.2, this changed the error log globally. Since lxml 2.2, the
global error log is local to a thread and this function will only set the global error
log of the current thread.

Variables

Name Description
DEBUG Value: 1
LIBXML_COMPILED_V-
ERSION

Value: (2, 9, 1)

LIBXML_VERSION Value: (2, 9, 1)
LIBXSLT_COMPILED_V-
ERSION

Value: (1, 1, 28)

LIBXSLT_VERSION Value: (1, 1, 28)
LXML_VERSION Value: (2, 3, 6, 0)

294

Class AttributeBasedElementClassLookup Module lxml.etree

Class AttributeBasedElementClassLookup

object

lxml.etree.ElementClassLookup

lxml.etree.FallbackElementClassLookup

lxml.etree.AttributeBasedElementClassLookup

AttributeBasedElementClassLookup(self, attribute_name, class_mapping, fallback=None) Checks
an attribute of an Element and looks up the value in a class dictionary.

Arguments:

∙ attribute name - ’{ns}name’ style string

∙ class mapping - Python dict mapping attribute values to Element classes

∙ fallback - optional fallback lookup mechanism

A None key in the class mapping will be checked if the attribute is missing.

Methods

__init__(self, attribute_name, class_mapping, fallback=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree.FallbackElementClassLookup(Section B)

set_fallback()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties
continued on next page

295

Class C14NError Module lxml.etree

Name Description

Name Description
Inherited from lxml.etree.FallbackElementClassLookup (Section B)
fallback
Inherited from object
__class__

Class C14NError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.C14NError

Error during C14N serialisation.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message

continued on next page

296

Class CDATA Module lxml.etree

Name Description
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’C14NError’

Class CDATA

object

lxml.etree.CDATA

CDATA(data)

CDATA factory. This factory creates an opaque data object that can be used to set Element text.
The usual way to use it is:

>>> el = Element(’content’)
>>> el.text = CDATA(’a string’)

>>> print(el.text)
a string
>>> print(tostring(el, encoding="unicode"))
<content><![CDATA[a string]]></content>

Methods

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from object
__class__

297

Class CommentBase Module lxml.etree

Class CommentBase

object

lxml.etree._Element

??.__ContentOnlyElement

lxml.etree._Comment

lxml.etree.CommentBase

Known Subclasses: lxml.html.HtmlComment

All custom Comment classes must inherit from this one.

To create an XML Comment instance, use the Comment() factory.

Subclasses must not override __init__ or __new__ as it is absolutely undefined when these
objects will be created or destroyed. All persistent state of Comments must be stored in the
underlying XML. If you really need to initialize the object after creation, you can implement
an _init(self) method that will be called after object creation.

Methods

__init__(...)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree._Comment

__repr__()

Inherited from ??.__ContentOnlyElement

__delitem__(), __getitem__(), __len__(), __setitem__(), append(), get(), insert(),
items(), keys(), set(), values()

Inherited from lxml.etree._Element

__contains__(), __copy__(), __deepcopy__(), __iter__(), __nonzero__(), __reversed__(),
addnext(), addprevious(), clear(), extend(), find(), findall(), findtext(), getchildren(),

298

Class CustomElementClassLookup Module lxml.etree

getiterator(), getnext(), getparent(), getprevious(), getroottree(), index(), iter(), iter-
ancestors(), iterchildren(), iterdescendants(), iterfind(), itersiblings(), itertext(), ma-
keelement(), remove(), replace(), xpath()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree._Comment
tag
Inherited from ??.__ContentOnlyElement
attrib, text
Inherited from lxml.etree._Element
base, nsmap, prefix, sourceline, tail
Inherited from object
__class__

Class CustomElementClassLookup

object

lxml.etree.ElementClassLookup

lxml.etree.FallbackElementClassLookup

lxml.etree.CustomElementClassLookup

Known Subclasses: lxml.html.HtmlElementClassLookup

CustomElementClassLookup(self, fallback=None) Element class lookup based on a subclass
method.

You can inherit from this class and override the method:

lookup(self, type, doc, namespace, name)

to lookup the element class for a node. Arguments of the method: * type: one of ’element’,
’comment’, ’PI’, ’entity’ * doc: document that the node is in * namespace: namespace URI
of the node (or None for comments/PIs/entities) * name: name of the element/entity, None for
comments, target for PIs

If you return None from this method, the fallback will be called.

299

Class DTD Module lxml.etree

Methods

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

lookup(self, type, doc, namespace, name)

Inherited from lxml.etree.FallbackElementClassLookup(Section B)

__init__(), set_fallback()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree.FallbackElementClassLookup (Section B)
fallback
Inherited from object
__class__

Class DTD

object

lxml.etree._Validator

lxml.etree.DTD

DTD(self, file=None, external_id=None) A DTD validator.

Can load from filesystem directly given a filename or file-like object. Alternatively, pass the
keyword parameter external_id to load from a catalog.

300

Class DTD Module lxml.etree

Methods

__call__(self, etree)

Validate doc using the DTD.

Returns true if the document is valid, false if not.

__init__(self, file=None, external_id=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

elements(...)

entities(...)

iterelements(...)

iterentities(...)

Inherited from lxml.etree._Validator

assertValid(), assert_(), validate()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
external_id
name
system_url
Inherited from lxml.etree._Validator
error_log
Inherited from object

continued on next page

301

Class DTDError Module lxml.etree

Name Description
__class__

Class DTDError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.DTDError

Known Subclasses: lxml.etree.DTDParseError, lxml.etree.DTDValidateError

Base class for DTD errors.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

302

Class DTDParseError Module lxml.etree

Class Variables

Name Description
__qualname__ Value: ’DTDError’

Class DTDParseError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.DTDError

lxml.etree.DTDParseError

Error while parsing a DTD.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object

continued on next page

303

Class DTDValidateError Module lxml.etree

Name Description
__class__

Class Variables

Name Description
__qualname__ Value: ’DTDParseError’

Class DTDValidateError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.DTDError

lxml.etree.DTDValidateError

Error while validating an XML document with a DTD.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

304

Class DocumentInvalid Module lxml.etree

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’DTDValidateError’

Class DocumentInvalid

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.DocumentInvalid

Validation error.

Raised by all document validators when their assertValid(tree) method fails.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

305

Class ETCompatXMLParser Module lxml.etree

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’DocumentInvalid’

Class ETCompatXMLParser

object

??._BaseParser

lxml.etree._FeedParser

lxml.etree.XMLParser

lxml.etree.ETCompatXMLParser

ETCompatXMLParser(self, encoding=None, attribute_defaults=False, dtd_validation=False,
load_dtd=False, no_network=True, ns_clean=False, recover=False, schema=None, huge_tree=False,
remove_blank_text=False, resolve_entities=True, remove_comments=True, remove_pis=True,
strip_cdata=True, target=None, compact=True)

An XML parser with an ElementTree compatible default setup.

See the XMLParser class for details.

This parser has remove_comments and remove_pis enabled by default and thus ignores
comments and processing instructions.

306

Class ETCompatXMLParser Module lxml.etree

Methods

__init__(self, encoding=None, attribute_defaults=False,
dtd_validation=False, load_dtd=False, no_network=True,
ns_clean=False, recover=False, schema=None, huge_tree=False,
remove_blank_text=False, resolve_entities=True, remove_comments=True,
remove_pis=True, strip_cdata=True, target=None, compact=True)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree._FeedParser

close(), feed()

Inherited from ??._BaseParser

copy(), makeelement(), setElementClassLookup(), set_element_class_lookup()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree._FeedParser
feed_error_log
Inherited from ??._BaseParser
error_log, resolvers, target, version
Inherited from object
__class__

307

Class ETXPath Module lxml.etree

Class ETXPath

object

lxml.etree._XPathEvaluatorBase

lxml.etree.XPath

lxml.etree.ETXPath

ETXPath(self, path, extensions=None, regexp=True, smart_strings=True) Special XPath class
that supports the ElementTree {uri} notation for namespaces.

Note that this class does not accept the namespace keyword argument. All namespaces must
be passed as part of the path string. Smart strings will be returned for string results unless you
pass smart_strings=False.

Methods

__init__(self, path, extensions=None, regexp=True, smart_strings=True)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree.XPath(Section B)

__call__(), __repr__()

Inherited from lxml.etree._XPathEvaluatorBase

evaluate()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree.XPath (Section B)
path

continued on next page

308

Class ElementBase Module lxml.etree

Name Description
Inherited from lxml.etree._XPathEvaluatorBase
error_log
Inherited from object
__class__

Class ElementBase

object

lxml.etree._Element

lxml.etree.ElementBase

Known Subclasses: lxml.objectify.ObjectifiedElement, lxml.html.HtmlElement

ElementBase(*children, attrib=None, nsmap=None, **_extra)

The public Element class. All custom Element classes must inherit from this one. To create an
Element, use the Element() factory.

BIG FAT WARNING: Subclasses must not override __init__ or __new__ as it is absolutely
undefined when these objects will be created or destroyed. All persistent state of Elements
must be stored in the underlying XML. If you really need to initialize the object after creation,
you can implement an _init(self) method that will be called directly after object creation.

Subclasses of this class can be instantiated to create a new Element. By default, the tag name
will be the class name and the namespace will be empty. You can modify this with the following
class attributes:

∙ TAG - the tag name, possibly containing a namespace in Clark notation

∙ NAMESPACE - the default namespace URI, unless provided as part of the TAG attribute.

∙ HTML - flag if the class is an HTML tag, as opposed to an XML tag. This only applies to
un-namespaced tags and defaults to false (i.e. XML).

∙ PARSER - the parser that provides the configuration for the newly created document.
Providing an HTML parser here will default to creating an HTML element.

In user code, the latter three are commonly inherited in class hierarchies that implement a
common namespace.

Methods

__init__(attrib=None, nsmap=None, *children, **_extra)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

309

Class ElementClassLookup Module lxml.etree

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree._Element

__contains__(), __copy__(), __deepcopy__(), __delitem__(), __getitem__(), __iter__(),
__len__(), __nonzero__(), __repr__(), __reversed__(), __setitem__(), addnext(), ad-
dprevious(), append(), clear(), extend(), find(), findall(), findtext(), get(), getchil-
dren(), getiterator(), getnext(), getparent(), getprevious(), getroottree(), index(), in-
sert(), items(), iter(), iterancestors(), iterchildren(), iterdescendants(), iterfind(), itersib-
lings(), itertext(), keys(), makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree._Element
attrib, base, nsmap, prefix, sourceline, tag, tail, text
Inherited from object
__class__

Class ElementClassLookup

object

lxml.etree.ElementClassLookup

Known Subclasses: lxml.objectify.ObjectifyElementClassLookup, lxml.etree.FallbackElementClassLookup,
lxml.etree.ElementDefaultClassLookup

ElementClassLookup(self) Superclass of Element class lookups.

Methods

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from object

310

Class ElementDefaultClassLookup Module lxml.etree

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from object
__class__

Class ElementDefaultClassLookup

object

lxml.etree.ElementClassLookup

lxml.etree.ElementDefaultClassLookup

ElementDefaultClassLookup(self, element=None, comment=None, pi=None, entity=None) El-
ement class lookup scheme that always returns the default Element class.

The keyword arguments element, comment, pi and entity accept the respective Element
classes.

Methods

__init__(self, element=None, comment=None, pi=None, entity=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties
continued on next page

311

Class ElementNamespaceClassLookup Module lxml.etree

Name Description

Name Description
comment_class
element_class
entity_class
pi_class
Inherited from object
__class__

Class ElementNamespaceClassLookup

object

lxml.etree.ElementClassLookup

lxml.etree.FallbackElementClassLookup

lxml.etree.ElementNamespaceClassLookup

ElementNamespaceClassLookup(self, fallback=None)

Element class lookup scheme that searches the Element class in the Namespace registry.

Methods

__init__(self, fallback=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

get_namespace(self, ns_uri)

Retrieve the namespace object associated with the given URI. Pass None for the
empty namespace.

Creates a new namespace object if it does not yet exist.

312

Class EntityBase Module lxml.etree

Inherited from lxml.etree.FallbackElementClassLookup(Section B)

set_fallback()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree.FallbackElementClassLookup (Section B)
fallback
Inherited from object
__class__

Class EntityBase

object

lxml.etree._Element

??.__ContentOnlyElement

lxml.etree._Entity

lxml.etree.EntityBase

Known Subclasses: lxml.html.HtmlEntity

All custom Entity classes must inherit from this one.

To create an XML Entity instance, use the Entity() factory.

Subclasses must not override __init__ or __new__ as it is absolutely undefined when these
objects will be created or destroyed. All persistent state of Entities must be stored in the un-
derlying XML. If you really need to initialize the object after creation, you can implement an
_init(self) method that will be called after object creation.

Methods

__init__(...)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

313

Class Error Module lxml.etree

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree._Entity

__repr__()

Inherited from ??.__ContentOnlyElement

__delitem__(), __getitem__(), __len__(), __setitem__(), append(), get(), insert(),
items(), keys(), set(), values()

Inherited from lxml.etree._Element

__contains__(), __copy__(), __deepcopy__(), __iter__(), __nonzero__(), __reversed__(),
addnext(), addprevious(), clear(), extend(), find(), findall(), findtext(), getchildren(),
getiterator(), getnext(), getparent(), getprevious(), getroottree(), index(), iter(), iter-
ancestors(), iterchildren(), iterdescendants(), iterfind(), itersiblings(), itertext(), ma-
keelement(), remove(), replace(), xpath()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree._Entity
name, tag, text
Inherited from ??.__ContentOnlyElement
attrib
Inherited from lxml.etree._Element
base, nsmap, prefix, sourceline, tail
Inherited from object
__class__

Class Error

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

314

Class ErrorDomains Module lxml.etree

Known Subclasses: lxml.etree.LxmlError

Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’Error’

Class ErrorDomains

object

lxml.etree.ErrorDomains

Libxml2 error domains

Methods

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(),
__subclasshook__()

315

Class ErrorDomains Module lxml.etree

Properties

Name Description
Inherited from object
__class__

Class Variables

Name Description
BUFFER Value: 29
C14N Value: 21
CATALOG Value: 20
CHECK Value: 24
DATATYPE Value: 15
DTD Value: 4
FTP Value: 9
HTML Value: 5
HTTP Value: 10
I18N Value: 27
IO Value: 8
MEMORY Value: 6
MODULE Value: 26
NAMESPACE Value: 3
NONE Value: 0
OUTPUT Value: 7
PARSER Value: 1
REGEXP Value: 14
RELAXNGP Value: 18
RELAXNGV Value: 19
SCHEMASP Value: 16
SCHEMASV Value: 17
SCHEMATRONV Value: 28
TREE Value: 2
URI Value: 30
VALID Value: 23
WRITER Value: 25
XINCLUDE Value: 11
XPATH Value: 12
XPOINTER Value: 13
XSLT Value: 22
__qualname__ Value: ’ErrorDomains’

316

Class ErrorTypes Module lxml.etree

Class ErrorLevels

object

lxml.etree.ErrorLevels

Libxml2 error levels

Methods

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(),
__subclasshook__()

Properties

Name Description
Inherited from object
__class__

Class Variables

Name Description
ERROR Value: 2
FATAL Value: 3
NONE Value: 0
WARNING Value: 1
__qualname__ Value: ’ErrorLevels’

Class ErrorTypes

object

lxml.etree.ErrorTypes

Libxml2 error types

Methods

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(),

317

Class ErrorTypes Module lxml.etree

__subclasshook__()

Properties

Name Description
Inherited from object
__class__

Class Variables

Name Description
BUF_OVERFLOW Value: 7000
C14N_CREATE_CTXT Value: 1950
C14N_CREATE_STACK Value: 1952
C14N_INVALID_NODE Value: 1953
C14N_RELATIVE_NAM-
ESPACE

Value: 1955

C14N_REQUIRES_UTF8 Value: 1951
C14N_UNKNOW_NODE Value: 1954
CATALOG_ENTRY_BR-
OKEN

Value: 1651

CATALOG_MISSING_A-
TTR

Value: 1650

CATALOG_NOT_CATA-
LOG

Value: 1653

CATALOG_PREFER_VA-
LUE

Value: 1652

CATALOG_RECURSION Value: 1654
CHECK_ENTITY_TYPE Value: 5012
CHECK_FOUND_ATTRI-
BUTE

Value: 5001

CHECK_FOUND_CDAT-
A

Value: 5003

CHECK_FOUND_COM-
MENT

Value: 5007

CHECK_FOUND_DOCT-
YPE

Value: 5008

CHECK_FOUND_ELEM-
ENT

Value: 5000

CHECK_FOUND_ENTIT-
Y

Value: 5005

CHECK_FOUND_ENTIT-
YREF

Value: 5004

CHECK_FOUND_FRAG-
MENT

Value: 5009

continued on next page

318

Class ErrorTypes Module lxml.etree

Name Description
CHECK_FOUND_NOTA-
TION

Value: 5010

CHECK_FOUND_PI Value: 5006
CHECK_FOUND_TEXT Value: 5002
CHECK_NAME_NOT_N-
ULL

Value: 5037

CHECK_NOT_ATTR Value: 5023
CHECK_NOT_ATTR_DE-
CL

Value: 5024

CHECK_NOT_DTD Value: 5022
CHECK_NOT_ELEM_D-
ECL

Value: 5025

CHECK_NOT_ENTITY_-
DECL

Value: 5026

CHECK_NOT_NCNAME Value: 5034
CHECK_NOT_NS_DECL Value: 5027
CHECK_NOT_UTF8 Value: 5032
CHECK_NO_DICT Value: 5033
CHECK_NO_DOC Value: 5014
CHECK_NO_ELEM Value: 5016
CHECK_NO_HREF Value: 5028
CHECK_NO_NAME Value: 5015
CHECK_NO_NEXT Value: 5020
CHECK_NO_PARENT Value: 5013
CHECK_NO_PREV Value: 5018
CHECK_NS_ANCESTOR Value: 5031
CHECK_NS_SCOPE Value: 5030
CHECK_OUTSIDE_DIC-
T

Value: 5035

CHECK_UNKNOWN_N-
ODE

Value: 5011

CHECK_WRONG_DOC Value: 5017
CHECK_WRONG_NAM-
E

Value: 5036

CHECK_WRONG_NEXT Value: 5021
CHECK_WRONG_PARE-
NT

Value: 5029

CHECK_WRONG_PREV Value: 5019
DTD_ATTRIBUTE_DEF-
AULT

Value: 500

DTD_ATTRIBUTE_RED-
EFINED

Value: 501

DTD_ATTRIBUTE_VAL-
UE

Value: 502

DTD_CONTENT_ERRO-
R

Value: 503

continued on next page

319

Class ErrorTypes Module lxml.etree

Name Description
DTD_CONTENT_MODE-
L

Value: 504

DTD_CONTENT_NOT_-
DETERMINIST

Value: 505

DTD_DIFFERENT_PREF-
IX

Value: 506

DTD_DUP_TOKEN Value: 541
DTD_ELEM_DEFAULT_-
NAMESPACE

Value: 507

DTD_ELEM_NAMESPA-
CE

Value: 508

DTD_ELEM_REDEFINE-
D

Value: 509

DTD_EMPTY_NOTATIO-
N

Value: 510

DTD_ENTITY_TYPE Value: 511
DTD_ID_FIXED Value: 512
DTD_ID_REDEFINED Value: 513
DTD_ID_SUBSET Value: 514
DTD_INVALID_CHILD Value: 515
DTD_INVALID_DEFAU-
LT

Value: 516

DTD_LOAD_ERROR Value: 517
DTD_MISSING_ATTRIB-
UTE

Value: 518

DTD_MIXED_CORRUPT Value: 519
DTD_MULTIPLE_ID Value: 520
DTD_NOTATION_REDE-
FINED

Value: 526

DTD_NOTATION_VAL-
UE

Value: 527

DTD_NOT_EMPTY Value: 528
DTD_NOT_PCDATA Value: 529
DTD_NOT_STANDALO-
NE

Value: 530

DTD_NO_DOC Value: 521
DTD_NO_DTD Value: 522
DTD_NO_ELEM_NAME Value: 523
DTD_NO_PREFIX Value: 524
DTD_NO_ROOT Value: 525
DTD_ROOT_NAME Value: 531
DTD_STANDALONE_D-
EFAULTED

Value: 538

DTD_STANDALONE_W-
HITE_SPACE

Value: 532

continued on next page

320

Class ErrorTypes Module lxml.etree

Name Description
DTD_UNKNOWN_ATTR-
IBUTE

Value: 533

DTD_UNKNOWN_ELE-
M

Value: 534

DTD_UNKNOWN_ENTI-
TY

Value: 535

DTD_UNKNOWN_ID Value: 536
DTD_UNKNOWN_NOT-
ATION

Value: 537

DTD_XMLID_TYPE Value: 540
DTD_XMLID_VALUE Value: 539
ERR_ATTLIST_NOT_FI-
NISHED

Value: 51

ERR_ATTLIST_NOT_ST-
ARTED

Value: 50

ERR_ATTRIBUTE_NOT-
_FINISHED

Value: 40

ERR_ATTRIBUTE_NOT-
_STARTED

Value: 39

ERR_ATTRIBUTE_RED-
EFINED

Value: 42

ERR_ATTRIBUTE_WIT-
HOUT_VALUE

Value: 41

ERR_CDATA_NOT_FINI-
SHED

Value: 63

ERR_CHARREF_AT_EO-
F

Value: 10

ERR_CHARREF_IN_DT-
D

Value: 13

ERR_CHARREF_IN_EPI-
LOG

Value: 12

ERR_CHARREF_IN_PR-
OLOG

Value: 11

ERR_COMMENT_NOT_-
FINISHED

Value: 45

ERR_CONDSEC_INVAL-
ID

Value: 83

ERR_CONDSEC_INVAL-
ID_KEYWORD

Value: 95

ERR_CONDSEC_NOT_F-
INISHED

Value: 59

ERR_CONDSEC_NOT_S-
TARTED

Value: 58

ERR_DOCTYPE_NOT_F-
INISHED

Value: 61

continued on next page

321

Class ErrorTypes Module lxml.etree

Name Description
ERR_DOCUMENT_EMP-
TY

Value: 4

ERR_DOCUMENT_END Value: 5
ERR_DOCUMENT_STA-
RT

Value: 3

ERR_ELEMCONTENT_-
NOT_FINISHED

Value: 55

ERR_ELEMCONTENT_-
NOT_STARTED

Value: 54

ERR_ENCODING_NAM-
E

Value: 79

ERR_ENTITYREF_AT_E-
OF

Value: 14

ERR_ENTITYREF_IN_D-
TD

Value: 17

ERR_ENTITYREF_IN_E-
PILOG

Value: 16

ERR_ENTITYREF_IN_P-
ROLOG

Value: 15

ERR_ENTITYREF_NO_-
NAME

Value: 22

ERR_ENTITYREF_SEMI-
COL_MISSING

Value: 23

ERR_ENTITY_BOUNDA-
RY

Value: 90

ERR_ENTITY_CHAR_E-
RROR

Value: 87

ERR_ENTITY_IS_EXTE-
RNAL

Value: 29

ERR_ENTITY_IS_PARA-
METER

Value: 30

ERR_ENTITY_LOOP Value: 89
ERR_ENTITY_NOT_FIN-
ISHED

Value: 37

ERR_ENTITY_NOT_ST-
ARTED

Value: 36

ERR_ENTITY_PE_INTE-
RNAL

Value: 88

ERR_ENTITY_PROCESS-
ING

Value: 104

ERR_EQUAL_REQUIRE-
D

Value: 75

ERR_EXTRA_CONTENT Value: 86
ERR_EXT_ENTITY_STA-
NDALONE

Value: 82

continued on next page

322

Class ErrorTypes Module lxml.etree

Name Description
ERR_EXT_SUBSET_NO-
T_FINISHED

Value: 60

ERR_GT_REQUIRED Value: 73
ERR_HYPHEN_IN_COM-
MENT

Value: 80

ERR_INTERNAL_ERRO-
R

Value: 1

ERR_INVALID_CHAR Value: 9
ERR_INVALID_CHARR-
EF

Value: 8

ERR_INVALID_DEC_C-
HARREF

Value: 7

ERR_INVALID_ENCODI-
NG

Value: 81

ERR_INVALID_HEX_C-
HARREF

Value: 6

ERR_INVALID_URI Value: 91
ERR_LITERAL_NOT_FI-
NISHED

Value: 44

ERR_LITERAL_NOT_ST-
ARTED

Value: 43

ERR_LTSLASH_REQUI-
RED

Value: 74

ERR_LT_IN_ATTRIBUT-
E

Value: 38

ERR_LT_REQUIRED Value: 72
ERR_MISPLACED_CDA-
TA_END

Value: 62

ERR_MISSING_ENCODI-
NG

Value: 101

ERR_MIXED_NOT_FINI-
SHED

Value: 53

ERR_MIXED_NOT_STA-
RTED

Value: 52

ERR_NAME_REQUIRED Value: 68
ERR_NAME_TOO_LON-
G

Value: 110

ERR_NMTOKEN_REQU-
IRED

Value: 67

ERR_NOTATION_NOT_-
FINISHED

Value: 49

ERR_NOTATION_NOT_-
STARTED

Value: 48

ERR_NOTATION_PROC-
ESSING

Value: 105

continued on next page

323

Class ErrorTypes Module lxml.etree

Name Description
ERR_NOT_STANDALO-
NE

Value: 103

ERR_NOT_WELL_BAL-
ANCED

Value: 85

ERR_NO_DTD Value: 94
ERR_NO_MEMORY Value: 2
ERR_NS_DECL_ERROR Value: 35
ERR_OK Value: 0
ERR_PCDATA_REQUIR-
ED

Value: 69

ERR_PEREF_AT_EOF Value: 18
ERR_PEREF_IN_EPILO-
G

Value: 20

ERR_PEREF_IN_INT_SU-
BSET

Value: 21

ERR_PEREF_IN_PROLO-
G

Value: 19

ERR_PEREF_NO_NAME Value: 24
ERR_PEREF_SEMICOL_-
MISSING

Value: 25

ERR_PI_NOT_FINISHED Value: 47
ERR_PI_NOT_STARTED Value: 46
ERR_PUBID_REQUIRE-
D

Value: 71

ERR_RESERVED_XML_-
NAME

Value: 64

ERR_SEPARATOR_REQ-
UIRED

Value: 66

ERR_SPACE_REQUIRE-
D

Value: 65

ERR_STANDALONE_V-
ALUE

Value: 78

ERR_STRING_NOT_CL-
OSED

Value: 34

ERR_STRING_NOT_ST-
ARTED

Value: 33

ERR_TAG_NAME_MIS-
MATCH

Value: 76

ERR_TAG_NOT_FINISH-
ED

Value: 77

ERR_UNDECLARED_E-
NTITY

Value: 26

ERR_UNKNOWN_ENCO-
DING

Value: 31

ERR_UNKNOWN_VERS-
ION

Value: 108

continued on next page

324

Class ErrorTypes Module lxml.etree

Name Description
ERR_UNPARSED_ENTI-
TY

Value: 28

ERR_UNSUPPORTED_E-
NCODING

Value: 32

ERR_URI_FRAGMENT Value: 92
ERR_URI_REQUIRED Value: 70
ERR_USER_STOP Value: 111
ERR_VALUE_REQUIRE-
D

Value: 84

ERR_VERSION_MISMA-
TCH

Value: 109

ERR_VERSION_MISSIN-
G

Value: 96

ERR_XMLDECL_NOT_F-
INISHED

Value: 57

ERR_XMLDECL_NOT_S-
TARTED

Value: 56

FTP_ACCNT Value: 2002
FTP_EPSV_ANSWER Value: 2001
FTP_PASV_ANSWER Value: 2000
FTP_URL_SYNTAX Value: 2003
HTML_STRUCURE_ER-
ROR

Value: 800

HTML_UNKNOWN_TA-
G

Value: 801

HTTP_UNKNOWN_HOS-
T

Value: 2022

HTTP_URL_SYNTAX Value: 2020
HTTP_USE_IP Value: 2021
I18N_CONV_FAILED Value: 6003
I18N_EXCESS_HANDLE-
R

Value: 6002

I18N_NO_HANDLER Value: 6001
I18N_NO_NAME Value: 6000
I18N_NO_OUTPUT Value: 6004
IO_BUFFER_FULL Value: 1548
IO_EACCES Value: 1501
IO_EADDRINUSE Value: 1554
IO_EAFNOSUPPORT Value: 1556
IO_EAGAIN Value: 1502
IO_EALREADY Value: 1555
IO_EBADF Value: 1503
IO_EBADMSG Value: 1504
IO_EBUSY Value: 1505
IO_ECANCELED Value: 1506
IO_ECHILD Value: 1507

continued on next page

325

Class ErrorTypes Module lxml.etree

Name Description
IO_ECONNREFUSED Value: 1552
IO_EDEADLK Value: 1508
IO_EDOM Value: 1509
IO_EEXIST Value: 1510
IO_EFAULT Value: 1511
IO_EFBIG Value: 1512
IO_EINPROGRESS Value: 1513
IO_EINTR Value: 1514
IO_EINVAL Value: 1515
IO_EIO Value: 1516
IO_EISCONN Value: 1551
IO_EISDIR Value: 1517
IO_EMFILE Value: 1518
IO_EMLINK Value: 1519
IO_EMSGSIZE Value: 1520
IO_ENAMETOOLONG Value: 1521
IO_ENCODER Value: 1544
IO_ENETUNREACH Value: 1553
IO_ENFILE Value: 1522
IO_ENODEV Value: 1523
IO_ENOENT Value: 1524
IO_ENOEXEC Value: 1525
IO_ENOLCK Value: 1526
IO_ENOMEM Value: 1527
IO_ENOSPC Value: 1528
IO_ENOSYS Value: 1529
IO_ENOTDIR Value: 1530
IO_ENOTEMPTY Value: 1531
IO_ENOTSOCK Value: 1550
IO_ENOTSUP Value: 1532
IO_ENOTTY Value: 1533
IO_ENXIO Value: 1534
IO_EPERM Value: 1535
IO_EPIPE Value: 1536
IO_ERANGE Value: 1537
IO_EROFS Value: 1538
IO_ESPIPE Value: 1539
IO_ESRCH Value: 1540
IO_ETIMEDOUT Value: 1541
IO_EXDEV Value: 1542
IO_FLUSH Value: 1545
IO_LOAD_ERROR Value: 1549
IO_NETWORK_ATTEM-
PT

Value: 1543

IO_NO_INPUT Value: 1547
IO_UNKNOWN Value: 1500

continued on next page

326

Class ErrorTypes Module lxml.etree

Name Description
IO_WRITE Value: 1546
MODULE_CLOSE Value: 4901
MODULE_OPEN Value: 4900
NS_ERR_ATTRIBUTE_R-
EDEFINED

Value: 203

NS_ERR_COLON Value: 205
NS_ERR_EMPTY Value: 204
NS_ERR_QNAME Value: 202
NS_ERR_UNDEFINED_-
NAMESPACE

Value: 201

NS_ERR_XML_NAMES-
PACE

Value: 200

REGEXP_COMPILE_ER-
ROR

Value: 1450

RNGP_ANYNAME_ATT-
R_ANCESTOR

Value: 1000

RNGP_ATTRIBUTE_CHI-
LDREN

Value: 1002

RNGP_ATTRIBUTE_CO-
NTENT

Value: 1003

RNGP_ATTRIBUTE_EM-
PTY

Value: 1004

RNGP_ATTRIBUTE_NO-
OP

Value: 1005

RNGP_ATTR_CONFLIC-
T

Value: 1001

RNGP_CHOICE_CONTE-
NT

Value: 1006

RNGP_CHOICE_EMPTY Value: 1007
RNGP_CREATE_FAILU-
RE

Value: 1008

RNGP_DATA_CONTEN-
T

Value: 1009

RNGP_DEFINE_CREAT-
E_FAILED

Value: 1011

RNGP_DEFINE_EMPTY Value: 1012
RNGP_DEFINE_MISSIN-
G

Value: 1013

RNGP_DEFINE_NAME_-
MISSING

Value: 1014

RNGP_DEF_CHOICE_A-
ND_INTERLEAVE

Value: 1010

RNGP_ELEMENT_CON-
TENT

Value: 1018

RNGP_ELEMENT_EMP-
TY

Value: 1017

continued on next page

327

Class ErrorTypes Module lxml.etree

Name Description
RNGP_ELEMENT_NAM-
E

Value: 1019

RNGP_ELEMENT_NO_C-
ONTENT

Value: 1020

RNGP_ELEM_CONTEN-
T_EMPTY

Value: 1015

RNGP_ELEM_CONTEN-
T_ERROR

Value: 1016

RNGP_ELEM_TEXT_CO-
NFLICT

Value: 1021

RNGP_EMPTY Value: 1022
RNGP_EMPTY_CONST-
RUCT

Value: 1023

RNGP_EMPTY_CONTE-
NT

Value: 1024

RNGP_EMPTY_NOT_E-
MPTY

Value: 1025

RNGP_ERROR_TYPE_LI-
B

Value: 1026

RNGP_EXCEPT_EMPTY Value: 1027
RNGP_EXCEPT_MISSIN-
G

Value: 1028

RNGP_EXCEPT_MULTI-
PLE

Value: 1029

RNGP_EXCEPT_NO_CO-
NTENT

Value: 1030

RNGP_EXTERNALREF_-
EMTPY

Value: 1031

RNGP_EXTERNALREF_-
RECURSE

Value: 1033

RNGP_EXTERNAL_REF-
_FAILURE

Value: 1032

RNGP_FORBIDDEN_AT-
TRIBUTE

Value: 1034

RNGP_FOREIGN_ELEM-
ENT

Value: 1035

RNGP_GRAMMAR_CO-
NTENT

Value: 1036

RNGP_GRAMMAR_EM-
PTY

Value: 1037

RNGP_GRAMMAR_MIS-
SING

Value: 1038

RNGP_GRAMMAR_NO_-
START

Value: 1039

RNGP_GROUP_ATTR_C-
ONFLICT

Value: 1040

continued on next page

328

Class ErrorTypes Module lxml.etree

Name Description
RNGP_HREF_ERROR Value: 1041
RNGP_INCLUDE_EMPT-
Y

Value: 1042

RNGP_INCLUDE_FAIL-
URE

Value: 1043

RNGP_INCLUDE_RECU-
RSE

Value: 1044

RNGP_INTERLEAVE_A-
DD

Value: 1045

RNGP_INTERLEAVE_C-
REATE_FAILED

Value: 1046

RNGP_INTERLEAVE_E-
MPTY

Value: 1047

RNGP_INTERLEAVE_N-
O_CONTENT

Value: 1048

RNGP_INVALID_DEFIN-
E_NAME

Value: 1049

RNGP_INVALID_URI Value: 1050
RNGP_INVALID_VALU-
E

Value: 1051

RNGP_MISSING_HREF Value: 1052
RNGP_NAME_MISSING Value: 1053
RNGP_NEED_COMBINE Value: 1054
RNGP_NOTALLOWED_-
NOT_EMPTY

Value: 1055

RNGP_NSNAME_ATTR-
_ANCESTOR

Value: 1056

RNGP_NSNAME_NO_N-
S

Value: 1057

RNGP_PARAM_FORBID-
DEN

Value: 1058

RNGP_PARAM_NAME_-
MISSING

Value: 1059

RNGP_PARENTREF_CR-
EATE_FAILED

Value: 1060

RNGP_PARENTREF_NA-
ME_INVALID

Value: 1061

RNGP_PARENTREF_NO-
T_EMPTY

Value: 1064

RNGP_PARENTREF_NO-
_NAME

Value: 1062

RNGP_PARENTREF_NO-
_PARENT

Value: 1063

RNGP_PARSE_ERROR Value: 1065
RNGP_PAT_ANYNAME-
_EXCEPT_ANYNAME

Value: 1066

continued on next page

329

Class ErrorTypes Module lxml.etree

Name Description
RNGP_PAT_ATTR_ATT-
R

Value: 1067

RNGP_PAT_ATTR_ELE-
M

Value: 1068

RNGP_PAT_DATA_EXC-
EPT_ATTR

Value: 1069

RNGP_PAT_DATA_EXC-
EPT_ELEM

Value: 1070

RNGP_PAT_DATA_EXC-
EPT_EMPTY

Value: 1071

RNGP_PAT_DATA_EXC-
EPT_GROUP

Value: 1072

RNGP_PAT_DATA_EXC-
EPT_INTERLEAVE

Value: 1073

RNGP_PAT_DATA_EXC-
EPT_LIST

Value: 1074

RNGP_PAT_DATA_EXC-
EPT_ONEMORE

Value: 1075

RNGP_PAT_DATA_EXC-
EPT_REF

Value: 1076

RNGP_PAT_DATA_EXC-
EPT_TEXT

Value: 1077

RNGP_PAT_LIST_ATTR Value: 1078
RNGP_PAT_LIST_ELEM Value: 1079
RNGP_PAT_LIST_INTE-
RLEAVE

Value: 1080

RNGP_PAT_LIST_LIST Value: 1081
RNGP_PAT_LIST_REF Value: 1082
RNGP_PAT_LIST_TEXT Value: 1083
RNGP_PAT_NSNAME_E-
XCEPT_ANYNAME

Value: 1084

RNGP_PAT_NSNAME_E-
XCEPT_NSNAME

Value: 1085

RNGP_PAT_ONEMORE-
_GROUP_ATTR

Value: 1086

RNGP_PAT_ONEMORE-
_INTERLEAVE_ATTR

Value: 1087

RNGP_PAT_START_AT-
TR

Value: 1088

RNGP_PAT_START_DA-
TA

Value: 1089

RNGP_PAT_START_EM-
PTY

Value: 1090

RNGP_PAT_START_GR-
OUP

Value: 1091

continued on next page

330

Class ErrorTypes Module lxml.etree

Name Description
RNGP_PAT_START_INT-
ERLEAVE

Value: 1092

RNGP_PAT_START_LIS-
T

Value: 1093

RNGP_PAT_START_ON-
EMORE

Value: 1094

RNGP_PAT_START_TE-
XT

Value: 1095

RNGP_PAT_START_VA-
LUE

Value: 1096

RNGP_PREFIX_UNDEFI-
NED

Value: 1097

RNGP_REF_CREATE_F-
AILED

Value: 1098

RNGP_REF_CYCLE Value: 1099
RNGP_REF_NAME_INV-
ALID

Value: 1100

RNGP_REF_NOT_EMPT-
Y

Value: 1103

RNGP_REF_NO_DEF Value: 1101
RNGP_REF_NO_NAME Value: 1102
RNGP_START_CHOICE-
_AND_INTERLEAVE

Value: 1104

RNGP_START_CONTEN-
T

Value: 1105

RNGP_START_EMPTY Value: 1106
RNGP_START_MISSING Value: 1107
RNGP_TEXT_EXPECTE-
D

Value: 1108

RNGP_TEXT_HAS_CHI-
LD

Value: 1109

RNGP_TYPE_MISSING Value: 1110
RNGP_TYPE_NOT_FOU-
ND

Value: 1111

RNGP_TYPE_VALUE Value: 1112
RNGP_UNKNOWN_ATT-
RIBUTE

Value: 1113

RNGP_UNKNOWN_CO-
MBINE

Value: 1114

RNGP_UNKNOWN_CO-
NSTRUCT

Value: 1115

RNGP_UNKNOWN_TYP-
E_LIB

Value: 1116

RNGP_URI_FRAGMENT Value: 1117
RNGP_URI_NOT_ABSO-
LUTE

Value: 1118

continued on next page

331

Class ErrorTypes Module lxml.etree

Name Description
RNGP_VALUE_EMPTY Value: 1119
RNGP_VALUE_NO_CO-
NTENT

Value: 1120

RNGP_XMLNS_NAME Value: 1121
RNGP_XML_NS Value: 1122
SAVE_CHAR_INVALID Value: 1401
SAVE_NOT_UTF8 Value: 1400
SAVE_NO_DOCTYPE Value: 1402
SAVE_UNKNOWN_ENC-
ODING

Value: 1403

SCHEMAP_AG_PROPS_-
CORRECT

Value: 3087

SCHEMAP_ATTRFORM-
DEFAULT_VALUE

Value: 1701

SCHEMAP_ATTRGRP_-
NONAME_NOREF

Value: 1702

SCHEMAP_ATTR_NON-
AME_NOREF

Value: 1703

SCHEMAP_AU_PROPS_-
CORRECT

Value: 3089

SCHEMAP_AU_PROPS_-
CORRECT_2

Value: 3078

SCHEMAP_A_PROPS_C-
ORRECT_2

Value: 3079

SCHEMAP_A_PROPS_C-
ORRECT_3

Value: 3090

SCHEMAP_COMPLEXT-
YPE_NONAME_NOREF

Value: 1704

SCHEMAP_COS_ALL_L-
IMITED

Value: 3091

SCHEMAP_COS_CT_EX-
TENDS_1_1

Value: 3063

SCHEMAP_COS_CT_EX-
TENDS_1_2

Value: 3088

SCHEMAP_COS_CT_EX-
TENDS_1_3

Value: 1800

SCHEMAP_COS_ST_DE-
RIVED_OK_2_1

Value: 3031

SCHEMAP_COS_ST_DE-
RIVED_OK_2_2

Value: 3032

SCHEMAP_COS_ST_RE-
STRICTS_1_1

Value: 3011

SCHEMAP_COS_ST_RE-
STRICTS_1_2

Value: 3012

SCHEMAP_COS_ST_RE-
STRICTS_1_3_1

Value: 3013

continued on next page

332

Class ErrorTypes Module lxml.etree

Name Description
SCHEMAP_COS_ST_RE-
STRICTS_1_3_2

Value: 3014

SCHEMAP_COS_ST_RE-
STRICTS_2_1

Value: 3015

SCHEMAP_COS_ST_RE-
STRICTS_2_3_1_1

Value: 3016

SCHEMAP_COS_ST_RE-
STRICTS_2_3_1_2

Value: 3017

SCHEMAP_COS_ST_RE-
STRICTS_2_3_2_1

Value: 3018

SCHEMAP_COS_ST_RE-
STRICTS_2_3_2_2

Value: 3019

SCHEMAP_COS_ST_RE-
STRICTS_2_3_2_3

Value: 3020

SCHEMAP_COS_ST_RE-
STRICTS_2_3_2_4

Value: 3021

SCHEMAP_COS_ST_RE-
STRICTS_2_3_2_5

Value: 3022

SCHEMAP_COS_ST_RE-
STRICTS_3_1

Value: 3023

SCHEMAP_COS_ST_RE-
STRICTS_3_3_1

Value: 3024

SCHEMAP_COS_ST_RE-
STRICTS_3_3_1_2

Value: 3025

SCHEMAP_COS_ST_RE-
STRICTS_3_3_2_1

Value: 3027

SCHEMAP_COS_ST_RE-
STRICTS_3_3_2_2

Value: 3026

SCHEMAP_COS_ST_RE-
STRICTS_3_3_2_3

Value: 3028

SCHEMAP_COS_ST_RE-
STRICTS_3_3_2_4

Value: 3029

SCHEMAP_COS_ST_RE-
STRICTS_3_3_2_5

Value: 3030

SCHEMAP_COS_VALID-
_DEFAULT_1

Value: 3058

SCHEMAP_COS_VALID-
_DEFAULT_2_1

Value: 3059

SCHEMAP_COS_VALID-
_DEFAULT_2_2_1

Value: 3060

SCHEMAP_COS_VALID-
_DEFAULT_2_2_2

Value: 3061

SCHEMAP_CT_PROPS_-
CORRECT_1

Value: 1782

SCHEMAP_CT_PROPS_-
CORRECT_2

Value: 1783

continued on next page

333

Class ErrorTypes Module lxml.etree

Name Description
SCHEMAP_CT_PROPS_-
CORRECT_3

Value: 1784

SCHEMAP_CT_PROPS_-
CORRECT_4

Value: 1785

SCHEMAP_CT_PROPS_-
CORRECT_5

Value: 1786

SCHEMAP_CVC_SIMPL-
E_TYPE

Value: 3062

SCHEMAP_C_PROPS_C-
ORRECT

Value: 3080

SCHEMAP_DEF_AND_P-
REFIX

Value: 1768

SCHEMAP_DERIVATIO-
N_OK_RESTRICTION_1

Value: 1787

SCHEMAP_DERIVATIO-
N_OK_RESTRICTION_2-
_1_1

Value: 1788

SCHEMAP_DERIVATIO-
N_OK_RESTRICTION_2-
_1_2

Value: 1789

SCHEMAP_DERIVATIO-
N_OK_RESTRICTION_2-
_1_3

Value: 3077

SCHEMAP_DERIVATIO-
N_OK_RESTRICTION_2-
_2

Value: 1790

SCHEMAP_DERIVATIO-
N_OK_RESTRICTION_3

Value: 1791

SCHEMAP_DERIVATIO-
N_OK_RESTRICTION_4-
_1

Value: 1797

SCHEMAP_DERIVATIO-
N_OK_RESTRICTION_4-
_2

Value: 1798

SCHEMAP_DERIVATIO-
N_OK_RESTRICTION_4-
_3

Value: 1799

SCHEMAP_ELEMFORM-
DEFAULT_VALUE

Value: 1705

SCHEMAP_ELEM_DEF-
AULT_FIXED

Value: 1755

SCHEMAP_ELEM_NON-
AME_NOREF

Value: 1706

SCHEMAP_EXTENSION-
_NO_BASE

Value: 1707

continued on next page

334

Class ErrorTypes Module lxml.etree

Name Description
SCHEMAP_E_PROPS_C-
ORRECT_2

Value: 3045

SCHEMAP_E_PROPS_C-
ORRECT_3

Value: 3046

SCHEMAP_E_PROPS_C-
ORRECT_4

Value: 3047

SCHEMAP_E_PROPS_C-
ORRECT_5

Value: 3048

SCHEMAP_E_PROPS_C-
ORRECT_6

Value: 3049

SCHEMAP_FACET_NO_-
VALUE

Value: 1708

SCHEMAP_FAILED_BU-
ILD_IMPORT

Value: 1709

SCHEMAP_FAILED_LO-
AD

Value: 1757

SCHEMAP_FAILED_PA-
RSE

Value: 1766

SCHEMAP_GROUP_NO-
NAME_NOREF

Value: 1710

SCHEMAP_IMPORT_NA-
MESPACE_NOT_URI

Value: 1711

SCHEMAP_IMPORT_RE-
DEFINE_NSNAME

Value: 1712

SCHEMAP_IMPORT_SC-
HEMA_NOT_URI

Value: 1713

SCHEMAP_INCLUDE_S-
CHEMA_NOT_URI

Value: 1770

SCHEMAP_INCLUDE_S-
CHEMA_NO_URI

Value: 1771

SCHEMAP_INTERNAL Value: 3069
SCHEMAP_INTERSECTI-
ON_NOT_EXPRESSIBL-
E

Value: 1793

SCHEMAP_INVALID_A-
TTR_COMBINATION

Value: 1777

SCHEMAP_INVALID_A-
TTR_INLINE_COMBINA-
TION

Value: 1778

SCHEMAP_INVALID_A-
TTR_NAME

Value: 1780

SCHEMAP_INVALID_A-
TTR_USE

Value: 1774

SCHEMAP_INVALID_B-
OOLEAN

Value: 1714

continued on next page

335

Class ErrorTypes Module lxml.etree

Name Description
SCHEMAP_INVALID_E-
NUM

Value: 1715

SCHEMAP_INVALID_F-
ACET

Value: 1716

SCHEMAP_INVALID_F-
ACET_VALUE

Value: 1717

SCHEMAP_INVALID_M-
AXOCCURS

Value: 1718

SCHEMAP_INVALID_M-
INOCCURS

Value: 1719

SCHEMAP_INVALID_R-
EF_AND_SUBTYPE

Value: 1720

SCHEMAP_INVALID_W-
HITE_SPACE

Value: 1721

SCHEMAP_MG_PROPS_-
CORRECT_1

Value: 3074

SCHEMAP_MG_PROPS_-
CORRECT_2

Value: 3075

SCHEMAP_MISSING_SI-
MPLETYPE_CHILD

Value: 1779

SCHEMAP_NOATTR_N-
OREF

Value: 1722

SCHEMAP_NOROOT Value: 1759
SCHEMAP_NOTATION_-
NO_NAME

Value: 1723

SCHEMAP_NOTHING_T-
O_PARSE

Value: 1758

SCHEMAP_NOTYPE_N-
OREF

Value: 1724

SCHEMAP_NOT_DETE-
RMINISTIC

Value: 3070

SCHEMAP_NOT_SCHE-
MA

Value: 1772

SCHEMAP_NO_XMLNS Value: 3056
SCHEMAP_NO_XSI Value: 3057
SCHEMAP_PREFIX_UN-
DEFINED

Value: 1700

SCHEMAP_P_PROPS_C-
ORRECT_1

Value: 3042

SCHEMAP_P_PROPS_C-
ORRECT_2_1

Value: 3043

SCHEMAP_P_PROPS_C-
ORRECT_2_2

Value: 3044

SCHEMAP_RECURSIVE Value: 1775
SCHEMAP_REDEFINED-
_ATTR

Value: 1764

continued on next page

336

Class ErrorTypes Module lxml.etree

Name Description
SCHEMAP_REDEFINED-
_ATTRGROUP

Value: 1763

SCHEMAP_REDEFINED-
_ELEMENT

Value: 1762

SCHEMAP_REDEFINED-
_GROUP

Value: 1760

SCHEMAP_REDEFINED-
_NOTATION

Value: 1765

SCHEMAP_REDEFINED-
_TYPE

Value: 1761

SCHEMAP_REF_AND_C-
ONTENT

Value: 1781

SCHEMAP_REF_AND_S-
UBTYPE

Value: 1725

SCHEMAP_REGEXP_IN-
VALID

Value: 1756

SCHEMAP_RESTRICTI-
ON_NONAME_NOREF

Value: 1726

SCHEMAP_S4S_ATTR_I-
NVALID_VALUE

Value: 3037

SCHEMAP_S4S_ATTR_-
MISSING

Value: 3036

SCHEMAP_S4S_ATTR_-
NOT_ALLOWED

Value: 3035

SCHEMAP_S4S_ELEM_-
MISSING

Value: 3034

SCHEMAP_S4S_ELEM_-
NOT_ALLOWED

Value: 3033

SCHEMAP_SIMPLETYP-
E_NONAME

Value: 1727

SCHEMAP_SRC_ATTRI-
BUTE_1

Value: 3051

SCHEMAP_SRC_ATTRI-
BUTE_2

Value: 3052

SCHEMAP_SRC_ATTRI-
BUTE_3_1

Value: 3053

SCHEMAP_SRC_ATTRI-
BUTE_3_2

Value: 3054

SCHEMAP_SRC_ATTRI-
BUTE_4

Value: 3055

SCHEMAP_SRC_ATTRI-
BUTE_GROUP_1

Value: 3071

SCHEMAP_SRC_ATTRI-
BUTE_GROUP_2

Value: 3072

SCHEMAP_SRC_ATTRI-
BUTE_GROUP_3

Value: 3073

continued on next page

337

Class ErrorTypes Module lxml.etree

Name Description
SCHEMAP_SRC_CT_1 Value: 3076
SCHEMAP_SRC_ELEME-
NT_1

Value: 3038

SCHEMAP_SRC_ELEME-
NT_2_1

Value: 3039

SCHEMAP_SRC_ELEME-
NT_2_2

Value: 3040

SCHEMAP_SRC_ELEME-
NT_3

Value: 3041

SCHEMAP_SRC_IMPOR-
T

Value: 3082

SCHEMAP_SRC_IMPOR-
T_1_1

Value: 3064

SCHEMAP_SRC_IMPOR-
T_1_2

Value: 3065

SCHEMAP_SRC_IMPOR-
T_2

Value: 3066

SCHEMAP_SRC_IMPOR-
T_2_1

Value: 3067

SCHEMAP_SRC_IMPOR-
T_2_2

Value: 3068

SCHEMAP_SRC_IMPOR-
T_3_1

Value: 1795

SCHEMAP_SRC_IMPOR-
T_3_2

Value: 1796

SCHEMAP_SRC_INCLU-
DE

Value: 3050

SCHEMAP_SRC_LIST_I-
TEMTYPE_OR_SIMPLE-
TYPE

Value: 3006

SCHEMAP_SRC_REDEF-
INE

Value: 3081

SCHEMAP_SRC_RESOL-
VE

Value: 3004

SCHEMAP_SRC_RESTR-
ICTION_BASE_OR_SIM-
PLETYPE

Value: 3005

SCHEMAP_SRC_SIMPL-
E_TYPE_1

Value: 3000

SCHEMAP_SRC_SIMPL-
E_TYPE_2

Value: 3001

SCHEMAP_SRC_SIMPL-
E_TYPE_3

Value: 3002

SCHEMAP_SRC_SIMPL-
E_TYPE_4

Value: 3003

continued on next page

338

Class ErrorTypes Module lxml.etree

Name Description
SCHEMAP_SRC_UNION-
_MEMBERTYPES_OR_S-
IMPLETYPES

Value: 3007

SCHEMAP_ST_PROPS_-
CORRECT_1

Value: 3008

SCHEMAP_ST_PROPS_-
CORRECT_2

Value: 3009

SCHEMAP_ST_PROPS_-
CORRECT_3

Value: 3010

SCHEMAP_SUPERNUM-
EROUS_LIST_ITEM_TY-
PE

Value: 1776

SCHEMAP_TYPE_AND_-
SUBTYPE

Value: 1728

SCHEMAP_UNION_NO-
T_EXPRESSIBLE

Value: 1794

SCHEMAP_UNKNOWN-
_ALL_CHILD

Value: 1729

SCHEMAP_UNKNOWN-
_ANYATTRIBUTE_CHI-
LD

Value: 1730

SCHEMAP_UNKNOWN-
_ATTRGRP_CHILD

Value: 1732

SCHEMAP_UNKNOWN-
_ATTRIBUTE_GROUP

Value: 1733

SCHEMAP_UNKNOWN-
_ATTR_CHILD

Value: 1731

SCHEMAP_UNKNOWN-
_BASE_TYPE

Value: 1734

SCHEMAP_UNKNOWN-
_CHOICE_CHILD

Value: 1735

SCHEMAP_UNKNOWN-
COMPLEXCONTENT-
CHILD

Value: 1736

SCHEMAP_UNKNOWN-
_COMPLEXTYPE_CHIL-
D

Value: 1737

SCHEMAP_UNKNOWN-
_ELEM_CHILD

Value: 1738

SCHEMAP_UNKNOWN-
_EXTENSION_CHILD

Value: 1739

SCHEMAP_UNKNOWN-
_FACET_CHILD

Value: 1740

SCHEMAP_UNKNOWN-
_FACET_TYPE

Value: 1741

continued on next page

339

Class ErrorTypes Module lxml.etree

Name Description
SCHEMAP_UNKNOWN-
_GROUP_CHILD

Value: 1742

SCHEMAP_UNKNOWN-
_IMPORT_CHILD

Value: 1743

SCHEMAP_UNKNOWN-
_INCLUDE_CHILD

Value: 1769

SCHEMAP_UNKNOWN-
_LIST_CHILD

Value: 1744

SCHEMAP_UNKNOWN-
_MEMBER_TYPE

Value: 1773

SCHEMAP_UNKNOWN-
_NOTATION_CHILD

Value: 1745

SCHEMAP_UNKNOWN-
_PREFIX

Value: 1767

SCHEMAP_UNKNOWN-
_PROCESSCONTENT_C-
HILD

Value: 1746

SCHEMAP_UNKNOWN-
_REF

Value: 1747

SCHEMAP_UNKNOWN-
_RESTRICTION_CHILD

Value: 1748

SCHEMAP_UNKNOWN-
_SCHEMAS_CHILD

Value: 1749

SCHEMAP_UNKNOWN-
_SEQUENCE_CHILD

Value: 1750

SCHEMAP_UNKNOWN-
_SIMPLECONTENT_CHI-
LD

Value: 1751

SCHEMAP_UNKNOWN-
_SIMPLETYPE_CHILD

Value: 1752

SCHEMAP_UNKNOWN-
_TYPE

Value: 1753

SCHEMAP_UNKNOWN-
_UNION_CHILD

Value: 1754

SCHEMAP_WARN_ATT-
R_POINTLESS_PROH

Value: 3086

SCHEMAP_WARN_ATT-
R_REDECL_PROH

Value: 3085

SCHEMAP_WARN_SKIP-
_SCHEMA

Value: 3083

SCHEMAP_WARN_UNL-
OCATED_SCHEMA

Value: 3084

SCHEMAP_WILDCARD-
_INVALID_NS_MEMBE-
R

Value: 1792

continued on next page

340

Class ErrorTypes Module lxml.etree

Name Description
SCHEMATRONV_ASSE-
RT

Value: 4000

SCHEMATRONV_REPO-
RT

Value: 4001

SCHEMAV_ATTRINVA-
LID

Value: 1821

SCHEMAV_ATTRUNKN-
OWN

Value: 1820

SCHEMAV_CONSTRUC-
T

Value: 1817

SCHEMAV_CVC_ATTRI-
BUTE_1

Value: 1861

SCHEMAV_CVC_ATTRI-
BUTE_2

Value: 1862

SCHEMAV_CVC_ATTRI-
BUTE_3

Value: 1863

SCHEMAV_CVC_ATTRI-
BUTE_4

Value: 1864

SCHEMAV_CVC_AU Value: 1874
SCHEMAV_CVC_COMP-
LEX_TYPE_1

Value: 1873

SCHEMAV_CVC_COMP-
LEX_TYPE_2_1

Value: 1841

SCHEMAV_CVC_COMP-
LEX_TYPE_2_2

Value: 1842

SCHEMAV_CVC_COMP-
LEX_TYPE_2_3

Value: 1843

SCHEMAV_CVC_COMP-
LEX_TYPE_2_4

Value: 1844

SCHEMAV_CVC_COMP-
LEX_TYPE_3_1

Value: 1865

SCHEMAV_CVC_COMP-
LEX_TYPE_3_2_1

Value: 1866

SCHEMAV_CVC_COMP-
LEX_TYPE_3_2_2

Value: 1867

SCHEMAV_CVC_COMP-
LEX_TYPE_4

Value: 1868

SCHEMAV_CVC_COMP-
LEX_TYPE_5_1

Value: 1869

SCHEMAV_CVC_COMP-
LEX_TYPE_5_2

Value: 1870

SCHEMAV_CVC_DATA-
TYPE_VALID_1_2_1

Value: 1824

SCHEMAV_CVC_DATA-
TYPE_VALID_1_2_2

Value: 1825

continued on next page

341

Class ErrorTypes Module lxml.etree

Name Description
SCHEMAV_CVC_DATA-
TYPE_VALID_1_2_3

Value: 1826

SCHEMAV_CVC_ELT_1 Value: 1845
SCHEMAV_CVC_ELT_2 Value: 1846
SCHEMAV_CVC_ELT_3-
_1

Value: 1847

SCHEMAV_CVC_ELT_3-
_2_1

Value: 1848

SCHEMAV_CVC_ELT_3-
_2_2

Value: 1849

SCHEMAV_CVC_ELT_4-
_1

Value: 1850

SCHEMAV_CVC_ELT_4-
_2

Value: 1851

SCHEMAV_CVC_ELT_4-
_3

Value: 1852

SCHEMAV_CVC_ELT_5-
_1_1

Value: 1853

SCHEMAV_CVC_ELT_5-
_1_2

Value: 1854

SCHEMAV_CVC_ELT_5-
_2_1

Value: 1855

SCHEMAV_CVC_ELT_5-
_2_2_1

Value: 1856

SCHEMAV_CVC_ELT_5-
_2_2_2_1

Value: 1857

SCHEMAV_CVC_ELT_5-
_2_2_2_2

Value: 1858

SCHEMAV_CVC_ELT_6 Value: 1859
SCHEMAV_CVC_ELT_7 Value: 1860
SCHEMAV_CVC_ENUM-
ERATION_VALID

Value: 1840

SCHEMAV_CVC_FACE-
T_VALID

Value: 1829

SCHEMAV_CVC_FRAC-
TIONDIGITS_VALID

Value: 1838

SCHEMAV_CVC_IDC Value: 1877
SCHEMAV_CVC_LENG-
TH_VALID

Value: 1830

SCHEMAV_CVC_MAXE-
XCLUSIVE_VALID

Value: 1836

SCHEMAV_CVC_MAXI-
NCLUSIVE_VALID

Value: 1834

SCHEMAV_CVC_MAXL-
ENGTH_VALID

Value: 1832

continued on next page

342

Class ErrorTypes Module lxml.etree

Name Description
SCHEMAV_CVC_MINE-
XCLUSIVE_VALID

Value: 1835

SCHEMAV_CVC_MININ-
CLUSIVE_VALID

Value: 1833

SCHEMAV_CVC_MINL-
ENGTH_VALID

Value: 1831

SCHEMAV_CVC_PATT-
ERN_VALID

Value: 1839

SCHEMAV_CVC_TOTA-
LDIGITS_VALID

Value: 1837

SCHEMAV_CVC_TYPE_-
1

Value: 1875

SCHEMAV_CVC_TYPE_-
2

Value: 1876

SCHEMAV_CVC_TYPE_-
3_1_1

Value: 1827

SCHEMAV_CVC_TYPE_-
3_1_2

Value: 1828

SCHEMAV_CVC_WILD-
CARD

Value: 1878

SCHEMAV_DOCUMEN-
T_ELEMENT_MISSING

Value: 1872

SCHEMAV_ELEMCONT Value: 1810
SCHEMAV_ELEMENT_-
CONTENT

Value: 1871

SCHEMAV_EXTRACON-
TENT

Value: 1813

SCHEMAV_FACET Value: 1823
SCHEMAV_HAVEDEFA-
ULT

Value: 1811

SCHEMAV_INTERNAL Value: 1818
SCHEMAV_INVALIDAT-
TR

Value: 1814

SCHEMAV_INVALIDEL-
EM

Value: 1815

SCHEMAV_ISABSTRAC-
T

Value: 1808

SCHEMAV_MISC Value: 1879
SCHEMAV_MISSING Value: 1804
SCHEMAV_NOROLLBA-
CK

Value: 1807

SCHEMAV_NOROOT Value: 1801
SCHEMAV_NOTDETER-
MINIST

Value: 1816

SCHEMAV_NOTEMPTY Value: 1809
continued on next page

343

Class ErrorTypes Module lxml.etree

Name Description
SCHEMAV_NOTNILLA-
BLE

Value: 1812

SCHEMAV_NOTSIMPL-
E

Value: 1819

SCHEMAV_NOTTOPLE-
VEL

Value: 1803

SCHEMAV_NOTYPE Value: 1806
SCHEMAV_UNDECLAR-
EDELEM

Value: 1802

SCHEMAV_VALUE Value: 1822
SCHEMAV_WRONGEL-
EM

Value: 1805

TREE_INVALID_DEC Value: 1301
TREE_INVALID_HEX Value: 1300
TREE_NOT_UTF8 Value: 1303
TREE_UNTERMINATED-
_ENTITY

Value: 1302

WAR_CATALOG_PI Value: 93
WAR_ENTITY_REDEFI-
NED

Value: 107

WAR_LANG_VALUE Value: 98
WAR_NS_COLUMN Value: 106
WAR_NS_URI Value: 99
WAR_NS_URI_RELATI-
VE

Value: 100

WAR_SPACE_VALUE Value: 102
WAR_UNDECLARED_E-
NTITY

Value: 27

WAR_UNKNOWN_VER-
SION

Value: 97

XINCLUDE_BUILD_FAI-
LED

Value: 1609

XINCLUDE_DEPRECAT-
ED_NS

Value: 1617

XINCLUDE_ENTITY_D-
EF_MISMATCH

Value: 1602

XINCLUDE_FALLBACK-
S_IN_INCLUDE

Value: 1615

XINCLUDE_FALLBACK-
_NOT_IN_INCLUDE

Value: 1616

XINCLUDE_FRAGMEN-
T_ID

Value: 1618

XINCLUDE_HREF_URI Value: 1605
XINCLUDE_INCLUDE_I-
N_INCLUDE

Value: 1614

continued on next page

344

Class ErrorTypes Module lxml.etree

Name Description
XINCLUDE_INVALID_C-
HAR

Value: 1608

XINCLUDE_MULTIPLE-
_ROOT

Value: 1611

XINCLUDE_NO_FALLB-
ACK

Value: 1604

XINCLUDE_NO_HREF Value: 1603
XINCLUDE_PARSE_VA-
LUE

Value: 1601

XINCLUDE_RECURSIO-
N

Value: 1600

XINCLUDE_TEXT_DOC-
UMENT

Value: 1607

XINCLUDE_TEXT_FRA-
GMENT

Value: 1606

XINCLUDE_UNKNOWN-
_ENCODING

Value: 1610

XINCLUDE_XPTR_FAIL-
ED

Value: 1612

XINCLUDE_XPTR_RES-
ULT

Value: 1613

XPATH_ENCODING_ER-
ROR

Value: 1220

XPATH_EXPRESSION_-
OK

Value: 1200

XPATH_EXPR_ERROR Value: 1207
XPATH_INVALID_ARIT-
Y

Value: 1212

XPATH_INVALID_CHA-
R_ERROR

Value: 1221

XPATH_INVALID_CTX-
T_POSITION

Value: 1214

XPATH_INVALID_CTX-
T_SIZE

Value: 1213

XPATH_INVALID_OPE-
RAND

Value: 1210

XPATH_INVALID_PRE-
DICATE_ERROR

Value: 1206

XPATH_INVALID_TYP-
E

Value: 1211

XPATH_MEMORY_ERR-
OR

Value: 1215

XPATH_NUMBER_ERR-
OR

Value: 1201

XPATH_START_LITER-
AL_ERROR

Value: 1203

continued on next page

345

Class FallbackElementClassLookup Module lxml.etree

Name Description
XPATH_UNCLOSED_ER-
ROR

Value: 1208

XPATH_UNDEF_PREFI-
X_ERROR

Value: 1219

XPATH_UNDEF_VARIA-
BLE_ERROR

Value: 1205

XPATH_UNFINISHED_L-
ITERAL_ERROR

Value: 1202

XPATH_UNKNOWN_FU-
NC_ERROR

Value: 1209

XPATH_VARIABLE_RE-
F_ERROR

Value: 1204

XPTR_CHILDSEQ_STA-
RT

Value: 1901

XPTR_EVAL_FAILED Value: 1902
XPTR_EXTRA_OBJECT-
S

Value: 1903

XPTR_RESOURCE_ERR-
OR

Value: 1217

XPTR_SUB_RESOURCE-
_ERROR

Value: 1218

XPTR_SYNTAX_ERROR Value: 1216
XPTR_UNKNOWN_SCH-
EME

Value: 1900

__qualname__ Value: ’ErrorTypes’

Class FallbackElementClassLookup

object

lxml.etree.ElementClassLookup

lxml.etree.FallbackElementClassLookup

Known Subclasses: lxml.etree.AttributeBasedElementClassLookup, lxml.etree.CustomElementClassLookup,
lxml.etree.ElementNamespaceClassLookup, lxml.etree.ParserBasedElementClassLookup, lxml.etree.PythonElementClassLookup

FallbackElementClassLookup(self, fallback=None)

Superclass of Element class lookups with additional fallback.

346

Class HTMLParser Module lxml.etree

Methods

__init__(self, fallback=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

set_fallback(self, lookup)

Sets the fallback scheme for this lookup method.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
fallback
Inherited from object
__class__

Class HTMLParser

object

??._BaseParser

lxml.etree._FeedParser

lxml.etree.HTMLParser

Known Subclasses: lxml.etree.HTMLPullParser, lxml.html.HTMLParser

HTMLParser(self, encoding=None, remove_blank_text=False, remove_comments=False, re-
move_pis=False, strip_cdata=True, no_network=True, target=None, XMLSchema schema=None,
recover=True, compact=True)

347

Class HTMLParser Module lxml.etree

The HTML parser.

This parser allows reading HTML into a normal XML tree. By default, it can read broken (non
well-formed) HTML, depending on the capabilities of libxml2. Use the ’recover’ option to
switch this off.

Available boolean keyword arguments:

∙ recover - try hard to parse through broken HTML (default: True)

∙ no_network - prevent network access for related files (default: True)

∙ remove_blank_text - discard empty text nodes that are ignorable (i.e. not actual text con-
tent)

∙ remove_comments - discard comments

∙ remove_pis - discard processing instructions

∙ strip_cdata - replace CDATA sections by normal text content (default: True)

∙ compact - save memory for short text content (default: True)

Other keyword arguments:

∙ encoding - override the document encoding

∙ target - a parser target object that will receive the parse events

∙ schema - an XMLSchema to validate against

Note that you should avoid sharing parsers between threads for performance reasons.

Methods

__init__(self, encoding=None, remove_blank_text=False,
remove_comments=False, remove_pis=False, strip_cdata=True,
no_network=True, target=None, XMLSchema schema=None, recover=True,
compact=True)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree._FeedParser

close(), feed()

348

Class LxmlError Module lxml.etree

Inherited from ??._BaseParser

copy(), makeelement(), setElementClassLookup(), set_element_class_lookup()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree._FeedParser
feed_error_log
Inherited from ??._BaseParser
error_log, resolvers, target, version
Inherited from object
__class__

Class LxmlError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

Known Subclasses: lxml.etree.C14NError, lxml.etree.DTDError, lxml.etree.DocumentInvalid,
lxml.etree.LxmlRegistryError, lxml.etree.LxmlSyntaxError, lxml.etree.ParserError, lxml.etree.RelaxNGError,
lxml.etree.SchematronError, lxml.etree.SerialisationError, lxml.etree.XIncludeError, lxml.etree.XMLSchemaError,
lxml.etree.XPathError, lxml.etree.XSLTError, lxml.sax.SaxError

Main exception base class for lxml. All other exceptions inherit from this one.

Methods

__init__(...)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

Inherited from exceptions.Exception

__new__()

349

Class LxmlRegistryError Module lxml.etree

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’LxmlError’

Class LxmlRegistryError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.LxmlRegistryError

Known Subclasses: lxml.etree.NamespaceRegistryError

Base class of lxml registry errors.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

350

Class LxmlSyntaxError Module lxml.etree

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’LxmlRegistryError’

Class LxmlSyntaxError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

object

exceptions.BaseException

exceptions.Exception

exceptions.StandardError

exceptions.SyntaxError

lxml.etree.LxmlSyntaxError

351

Class LxmlSyntaxError Module lxml.etree

Known Subclasses: lxml.etree.ParseError, lxml.etree.XPathSyntaxError, lxml.ElementInclude.FatalIncludeError

Base class for all syntax errors.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.SyntaxError

__new__(), __str__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.SyntaxError
filename, lineno, msg, offset, print_file_and_line, text
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’LxmlSyntaxError’

352

Class NamespaceRegistryError Module lxml.etree

Class NamespaceRegistryError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.LxmlRegistryError

lxml.etree.NamespaceRegistryError

Error registering a namespace extension.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

353

Class PIBase Module lxml.etree

Name Description
__qualname__ Value: ’NamespaceRegistryError’

Class PIBase

object

lxml.etree._Element

??.__ContentOnlyElement

lxml.etree._ProcessingInstruction

lxml.etree.PIBase

Known Subclasses: lxml.etree._XSLTProcessingInstruction, lxml.html.HtmlProcessingInstruction

All custom Processing Instruction classes must inherit from this one.

To create an XML ProcessingInstruction instance, use the PI() factory.

Subclasses must not override __init__ or __new__ as it is absolutely undefined when these
objects will be created or destroyed. All persistent state of PIs must be stored in the under-
lying XML. If you really need to initialize the object after creation, you can implement an
_init(self) method that will be called after object creation.

Methods

__init__(...)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree._ProcessingInstruction

__repr__(), get()

Inherited from ??.__ContentOnlyElement

__delitem__(), __getitem__(), __len__(), __setitem__(), append(), insert(), items(),
keys(), set(), values()

354

Class PIBase Module lxml.etree

Inherited from lxml.etree._Element

__contains__(), __copy__(), __deepcopy__(), __iter__(), __nonzero__(), __reversed__(),
addnext(), addprevious(), clear(), extend(), find(), findall(), findtext(), getchildren(),
getiterator(), getnext(), getparent(), getprevious(), getroottree(), index(), iter(), iter-
ancestors(), iterchildren(), iterdescendants(), iterfind(), itersiblings(), itertext(), ma-
keelement(), remove(), replace(), xpath()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree._ProcessingInstruction
attrib, tag, target
Inherited from ??.__ContentOnlyElement
text
Inherited from lxml.etree._Element
base, nsmap, prefix, sourceline, tail
Inherited from object
__class__

355

Class ParseError Module lxml.etree

Class ParseError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

object

exceptions.BaseException

exceptions.Exception

exceptions.StandardError

exceptions.SyntaxError

lxml.etree.LxmlSyntaxError

lxml.etree.ParseError

Known Subclasses: lxml.etree.XMLSyntaxError

Syntax error while parsing an XML document.

For compatibility with ElementTree 1.3 and later.

Methods

__init__(...)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

Inherited from exceptions.SyntaxError

__new__(), __str__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __unicode__()

Inherited from object

356

Class ParserBasedElementClassLookup Module lxml.etree

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.SyntaxError
filename, lineno, msg, offset, print_file_and_line, text
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’ParseError’

Class ParserBasedElementClassLookup

object

lxml.etree.ElementClassLookup

lxml.etree.FallbackElementClassLookup

lxml.etree.ParserBasedElementClassLookup

ParserBasedElementClassLookup(self, fallback=None) Element class lookup based on the XML
parser.

Methods

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree.FallbackElementClassLookup(Section B)

__init__(), set_fallback()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

357

Class ParserError Module lxml.etree

Properties

Name Description
Inherited from lxml.etree.FallbackElementClassLookup (Section B)
fallback
Inherited from object
__class__

Class ParserError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.ParserError

Internal lxml parser error.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message

continued on next page

358

Class PyErrorLog Module lxml.etree

Name Description
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’ParserError’

Class PyErrorLog

object

lxml.etree._BaseErrorLog

lxml.etree.PyErrorLog

PyErrorLog(self, logger_name=None, logger=None) A global error log that connects to the
Python stdlib logging package.

The constructor accepts an optional logger name or a readily instantiated logger instance.

If you want to change the mapping between libxml2’s ErrorLevels and Python logging levels,
you can modify the level_map dictionary from a subclass.

The default mapping is:

ErrorLevels.WARNING = logging.WARNING
ErrorLevels.ERROR = logging.ERROR
ErrorLevels.FATAL = logging.CRITICAL

You can also override the method receive() that takes a LogEntry object and calls self.log(log_entry,
format_string, arg1, arg2, ...) with appropriate data.

Methods

__init__(self, logger_name=None, logger=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

359

Class PyErrorLog Module lxml.etree

copy(...)

Dummy method that returns an empty error log. Overrides:
lxml.etree._BaseErrorLog.copy

log(self, log_entry, message, *args)

Called by the .receive() method to log a _LogEntry instance to the Python
logging system. This handles the error level mapping.

In the default implementation, the message argument receives a complete log
line, and there are no further args. To change the message format, it is best to
override the .receive() method instead of this one.

receive(self, log_entry)

Receive a _LogEntry instance from the logging system. Calls the .log() method
with appropriate parameters:

self.log(log_entry, repr(log_entry))

You can override this method to provide your own log output format. Overrides:
lxml.etree._BaseErrorLog.receive

Inherited from lxml.etree._BaseErrorLog

__repr__()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
level_map
Inherited from lxml.etree._BaseErrorLog
last_error
Inherited from object
__class__

360

Class PythonElementClassLookup Module lxml.etree

Class PythonElementClassLookup

object

lxml.etree.ElementClassLookup

lxml.etree.FallbackElementClassLookup

lxml.etree.PythonElementClassLookup

PythonElementClassLookup(self, fallback=None) Element class lookup based on a subclass
method.

This class lookup scheme allows access to the entire XML tree in read-only mode. To use it,
re-implement the lookup(self, doc, root) method in a subclass:

from lxml import etree, pyclasslookup

class MyElementClass(etree.ElementBase):
honkey = True

class MyLookup(pyclasslookup.PythonElementClassLookup):
def lookup(self, doc, root):

if root.tag == "sometag":
return MyElementClass

else:
for child in root:

if child.tag == "someothertag":
return MyElementClass

delegate to default
return None

If you return None from this method, the fallback will be called.

The first argument is the opaque document instance that contains the Element. The second
argument is a lightweight Element proxy implementation that is only valid during the lookup.
Do not try to keep a reference to it. Once the lookup is done, the proxy will be invalid.

Also, you cannot wrap such a read-only Element in an ElementTree, and you must take care
not to keep a reference to them outside of the lookup() method.

Note that the API of the Element objects is not complete. It is purely read-only and does not
support all features of the normal lxml.etree API (such as XPath, extended slicing or some
iteration methods).

See http://codespeak.net/lxml/element_classes.html

361

http://codespeak.net/lxml/element_classes.html

Class QName Module lxml.etree

Methods

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

lookup(self, doc, element)

Override this method to implement your own lookup scheme.

Inherited from lxml.etree.FallbackElementClassLookup(Section B)

__init__(), set_fallback()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree.FallbackElementClassLookup (Section B)
fallback
Inherited from object
__class__

Class QName

object

lxml.etree.QName

QName(text_or_uri_or_element, tag=None)

QName wrapper for qualified XML names.

Pass a tag name by itself or a namespace URI and a tag name to create a qualified name.
Alternatively, pass an Element to extract its tag name.

The text property holds the qualified name in {namespace}tagname notation. The
namespace and localname properties hold the respective parts of the tag name.

You can pass QName objects wherever a tag name is expected. Also, setting Element text from
a QName will resolve the namespace prefix and set a qualified text value. This is helpful in
XML languages like SOAP or XML-Schema that use prefixed tag names in their text content.

362

Class QName Module lxml.etree

Methods

__eq__(x, y)

x==y

__ge__(x, y)

x>=y

__gt__(x, y)

x>y

__hash__(x)

hash(x) Overrides: object.__hash__

__init__(text_or_uri_or_element, tag=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__le__(x, y)

x<=y

__lt__(x, y)

x<y

__ne__(x, y)

x!=y

363

Class RelaxNG Module lxml.etree

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

__str__(x)

str(x) Overrides: object.__str__

Inherited from object

__delattr__(), __format__(), __getattribute__(), __reduce__(), __reduce_ex__(), __repr__(),
__setattr__(), __sizeof__(), __subclasshook__()

Properties

Name Description
localname
namespace
text
Inherited from object
__class__

Class RelaxNG

object

lxml.etree._Validator

lxml.etree.RelaxNG

RelaxNG(self, etree=None, file=None) Turn a document into a Relax NG validator.

Either pass a schema as Element or ElementTree, or pass a file or filename through the file
keyword argument.

Methods

__call__(self, etree)

Validate doc using Relax NG.

Returns true if document is valid, false if not.

364

Class RelaxNGError Module lxml.etree

__init__(self, etree=None, file=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree._Validator

assertValid(), assert_(), validate()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree._Validator
error_log
Inherited from object
__class__

Class RelaxNGError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.RelaxNGError

Known Subclasses: lxml.etree.RelaxNGParseError, lxml.etree.RelaxNGValidateError

Base class for RelaxNG errors.

365

Class RelaxNGErrorTypes Module lxml.etree

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’RelaxNGError’

Class RelaxNGErrorTypes

object

lxml.etree.RelaxNGErrorTypes

Libxml2 RelaxNG error types

Methods

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(),
__subclasshook__()

366

Class RelaxNGErrorTypes Module lxml.etree

Properties

Name Description
Inherited from object
__class__

Class Variables

Name Description
RELAXNG_ERR_ATTRE-
XTRANS

Value: 20

RELAXNG_ERR_ATTR-
NAME

Value: 14

RELAXNG_ERR_ATTR-
NONS

Value: 16

RELAXNG_ERR_ATTR-
VALID

Value: 24

RELAXNG_ERR_ATTR-
WRONGNS

Value: 18

RELAXNG_ERR_CONT-
ENTVALID

Value: 25

RELAXNG_ERR_DATA-
ELEM

Value: 28

RELAXNG_ERR_DATA-
TYPE

Value: 31

RELAXNG_ERR_DUPID Value: 4
RELAXNG_ERR_ELEM-
EXTRANS

Value: 19

RELAXNG_ERR_ELEM-
NAME

Value: 13

RELAXNG_ERR_ELEM-
NONS

Value: 15

RELAXNG_ERR_ELEM-
NOTEMPTY

Value: 21

RELAXNG_ERR_ELEM-
WRONG

Value: 38

RELAXNG_ERR_ELEM-
WRONGNS

Value: 17

RELAXNG_ERR_EXTR-
ACONTENT

Value: 26

RELAXNG_ERR_EXTR-
ADATA

Value: 35

RELAXNG_ERR_INTER-
EXTRA

Value: 12

RELAXNG_ERR_INTER-
NAL

Value: 37

continued on next page

367

Class RelaxNGErrorTypes Module lxml.etree

Name Description
RELAXNG_ERR_INTER-
NODATA

Value: 10

RELAXNG_ERR_INTER-
SEQ

Value: 11

RELAXNG_ERR_INVAL-
IDATTR

Value: 27

RELAXNG_ERR_LACK-
DATA

Value: 36

RELAXNG_ERR_LIST Value: 33
RELAXNG_ERR_LISTE-
LEM

Value: 30

RELAXNG_ERR_LISTE-
MPTY

Value: 9

RELAXNG_ERR_LISTE-
XTRA

Value: 8

RELAXNG_ERR_MEMO-
RY

Value: 1

RELAXNG_ERR_NODE-
FINE

Value: 7

RELAXNG_ERR_NOEL-
EM

Value: 22

RELAXNG_ERR_NOGR-
AMMAR

Value: 34

RELAXNG_ERR_NOST-
ATE

Value: 6

RELAXNG_ERR_NOTE-
LEM

Value: 23

RELAXNG_ERR_TEXT-
WRONG

Value: 39

RELAXNG_ERR_TYPE Value: 2
RELAXNG_ERR_TYPEC-
MP

Value: 5

RELAXNG_ERR_TYPEV-
AL

Value: 3

RELAXNG_ERR_VALE-
LEM

Value: 29

RELAXNG_ERR_VALU-
E

Value: 32

RELAXNG_OK Value: 0
__qualname__ Value: ’RelaxNGErrorTypes’

368

Class RelaxNGParseError Module lxml.etree

Class RelaxNGParseError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.RelaxNGError

lxml.etree.RelaxNGParseError

Error while parsing an XML document as RelaxNG.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables
continued on next page

369

Class RelaxNGValidateError Module lxml.etree

Name Description

Name Description
__qualname__ Value: ’RelaxNGParseError’

Class RelaxNGValidateError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.RelaxNGError

lxml.etree.RelaxNGValidateError

Error while validating an XML document with a RelaxNG schema.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object

continued on next page

370

Class Resolver Module lxml.etree

Name Description
__class__

Class Variables

Name Description
__qualname__ Value: ’RelaxNGValidateError’

Class Resolver

object

lxml.etree.Resolver

This is the base class of all resolvers.

Methods

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

resolve(self, system_url, public_id, context)

Override this method to resolve an external source by system_url and
public_id. The third argument is an opaque context object.

Return the result of one of the resolve_*() methods.

resolve_empty(self, context)

Return an empty input document.

Pass context as parameter.

371

Class Schematron Module lxml.etree

resolve_file(self, f, context, base_url=None, close=True)

Return an open file-like object as input document.

Pass open file and context as parameters. You can pass the base URL or filename
of the file through the base_url keyword argument. If the close flag is True
(the default), the file will be closed after reading.

Note that using .resolve_filename() is more efficient, especially in
threaded environments.

resolve_filename(self, filename, context)

Return the name of a parsable file as input document.

Pass filename and context as parameters. You can also pass a URL with an
HTTP, FTP or file target.

resolve_string(self, string, context, base_url=None)

Return a parsable string as input document.

Pass data string and context as parameters. You can pass the source URL or
filename through the base_url keyword argument.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from object
__class__

Class Schematron

object

lxml.etree._Validator

lxml.etree.Schematron

372

Class Schematron Module lxml.etree

Schematron(self, etree=None, file=None) A Schematron validator.

Pass a root Element or an ElementTree to turn it into a validator. Alternatively, pass a filename
as keyword argument ’file’ to parse from the file system.

Schematron is a less well known, but very powerful schema language. The main idea is to use
the capabilities of XPath to put restrictions on the structure and the content of XML documents.
Here is a simple example:

>>> schematron = Schematron(XML(’’’
... <schema xmlns="http://www.ascc.net/xml/schematron" >
... <pattern name="id is the only permited attribute name">
... <rule context="*">
... <report test="@*[not(name()=’id’)]">Attribute
... <name path="@*[not(name()=’id’)]"/> is forbidden<name/>
... </report>
... </rule>
... </pattern>
... </schema>
... ’’’))

>>> xml = XML(’’’
... <AAA name="aaa">
... <BBB id="bbb"/>
... <CCC color="ccc"/>
... </AAA>
... ’’’)

>>> schematron.validate(xml)
0

>>> xml = XML(’’’
... <AAA id="aaa">
... <BBB id="bbb"/>
... <CCC/>
... </AAA>
... ’’’)

>>> schematron.validate(xml)
1

Schematron was added to libxml2 in version 2.6.21. Before version 2.6.32, however, Schema-
tron lacked support for error reporting other than to stderr. This version is therefore required to
retrieve validation warnings and errors in lxml.

373

Class Schematron Module lxml.etree

Methods

__call__(self, etree)

Validate doc using Schematron.

Returns true if document is valid, false if not.

__init__(self, etree=None, file=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree._Validator

assertValid(), assert_(), validate()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree._Validator
error_log
Inherited from object
__class__

374

Class SchematronError Module lxml.etree

Class SchematronError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.SchematronError

Known Subclasses: lxml.etree.SchematronParseError, lxml.etree.SchematronValidateError

Base class of all Schematron errors.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables
continued on next page

375

Class SchematronParseError Module lxml.etree

Name Description

Name Description
__qualname__ Value: ’SchematronError’

Class SchematronParseError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.SchematronError

lxml.etree.SchematronParseError

Error while parsing an XML document as Schematron schema.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object

continued on next page

376

Class SchematronValidateError Module lxml.etree

Name Description
__class__

Class Variables

Name Description
__qualname__ Value: ’SchematronParseError’

Class SchematronValidateError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.SchematronError

lxml.etree.SchematronValidateError

Error while validating an XML document with a Schematron schema.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

377

Class SerialisationError Module lxml.etree

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’SchematronValidateError’

Class SerialisationError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.SerialisationError

A libxml2 error that occurred during serialisation.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

378

Class TreeBuilder Module lxml.etree

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’SerialisationError’

Class TreeBuilder

object

lxml.etree._SaxParserTarget

lxml.etree.TreeBuilder

TreeBuilder(self, element_factory=None, parser=None) Parser target that builds a tree.

The final tree is returned by the close() method.

Methods

__init__(self, element_factory=None, parser=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

close(self)

Flushes the builder buffers, and returns the toplevel document element.

comment(self, comment)

379

Class XInclude Module lxml.etree

data(self, data)

Adds text to the current element. The value should be either an 8-bit string
containing ASCII text, or a Unicode string.

end(self, tag)

Closes the current element.

pi(self, target, data)

start(self, tag, attrs, nsmap=None)

Opens a new element.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from object
__class__

Class XInclude

object

lxml.etree.XInclude

XInclude(self) XInclude processor.

Create an instance and call it on an Element to run XInclude processing.

Methods

__call__(self, node)

380

Class XIncludeError Module lxml.etree

__init__(self)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
error_log
Inherited from object
__class__

Class XIncludeError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.XIncludeError

Error during XInclude processing.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

381

Class XMLParser Module lxml.etree

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’XIncludeError’

Class XMLParser

object

??._BaseParser

lxml.etree._FeedParser

lxml.etree.XMLParser

Known Subclasses: lxml.etree.ETCompatXMLParser, lxml.etree.XMLPullParser, lxml.html.XHTMLParser

XMLParser(self, encoding=None, attribute_defaults=False, dtd_validation=False, load_dtd=False,
no_network=True, ns_clean=False, recover=False, XMLSchema schema=None, remove_blank_text=False,
resolve_entities=True, remove_comments=False, remove_pis=False, strip_cdata=True, collect_ids=True,
target=None, compact=True)

The XML parser.

Parsers can be supplied as additional argument to various parse functions of the lxml API.
A default parser is always available and can be replaced by a call to the global function
’set_default_parser’. New parsers can be created at any time without a major run-time over-
head.

The keyword arguments in the constructor are mainly based on the libxml2 parser configu-

382

Class XMLParser Module lxml.etree

ration. A DTD will also be loaded if DTD validation or attribute default values are requested
(unless you additionally provide an XMLSchema from which the default attributes can be read).

Available boolean keyword arguments:

∙ attribute_defaults - inject default attributes from DTD or XMLSchema

∙ dtd_validation - validate against a DTD referenced by the document

∙ load_dtd - use DTD for parsing

∙ no_network - prevent network access for related files (default: True)

∙ ns_clean - clean up redundant namespace declarations

∙ recover - try hard to parse through broken XML

∙ remove_blank_text - discard blank text nodes that appear ignorable

∙ remove_comments - discard comments

∙ remove_pis - discard processing instructions

∙ strip_cdata - replace CDATA sections by normal text content (default: True)

∙ compact - save memory for short text content (default: True)

∙ collect_ids - create a hash table of XML IDs (default: True, always True with DTD vali-
dation)

∙ resolve_entities - replace entities by their text value (default: True)

∙ huge_tree - disable security restrictions and support very deep trees and very long text
content (only affects libxml2 2.7+)

Other keyword arguments:

∙ encoding - override the document encoding

∙ target - a parser target object that will receive the parse events

∙ schema - an XMLSchema to validate against

Note that you should avoid sharing parsers between threads. While this is not harmful, it is
more efficient to use separate parsers. This does not apply to the default parser.

383

Class XMLParser Module lxml.etree

Methods

__init__(self, encoding=None, attribute_defaults=False,
dtd_validation=False, load_dtd=False, no_network=True,
ns_clean=False, recover=False, XMLSchema schema=None,
remove_blank_text=False, resolve_entities=True,
remove_comments=False, remove_pis=False, strip_cdata=True,
collect_ids=True, target=None, compact=True)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree._FeedParser

close(), feed()

Inherited from ??._BaseParser

copy(), makeelement(), setElementClassLookup(), set_element_class_lookup()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree._FeedParser
feed_error_log
Inherited from ??._BaseParser
error_log, resolvers, target, version
Inherited from object
__class__

384

Class XMLSchema Module lxml.etree

Class XMLSchema

object

lxml.etree._Validator

lxml.etree.XMLSchema

XMLSchema(self, etree=None, file=None) Turn a document into an XML Schema validator.

Either pass a schema as Element or ElementTree, or pass a file or filename through the file
keyword argument.

Passing the attribute_defaults boolean option will make the schema insert default/fixed
attributes into validated documents.

Methods

__call__(self, etree)

Validate doc using XML Schema.

Returns true if document is valid, false if not.

__init__(self, etree=None, file=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree._Validator

assertValid(), assert_(), validate()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

385

Class XMLSchemaError Module lxml.etree

Name Description
Inherited from lxml.etree._Validator
error_log
Inherited from object
__class__

Class XMLSchemaError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.XMLSchemaError

Known Subclasses: lxml.etree.XMLSchemaParseError, lxml.etree.XMLSchemaValidateError

Base class of all XML Schema errors

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message

continued on next page

386

Class XMLSchemaParseError Module lxml.etree

Name Description
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’XMLSchemaError’

Class XMLSchemaParseError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.XMLSchemaError

lxml.etree.XMLSchemaParseError

Error while parsing an XML document as XML Schema.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

387

Class XMLSchemaValidateError Module lxml.etree

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’XMLSchemaParseError’

Class XMLSchemaValidateError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.XMLSchemaError

lxml.etree.XMLSchemaValidateError

Error while validating an XML document with an XML Schema.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

388

Class XMLSyntaxError Module lxml.etree

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’XMLSchemaValidateError’

Class XMLSyntaxError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

object

exceptions.BaseException

exceptions.Exception

exceptions.StandardError

exceptions.SyntaxError

lxml.etree.LxmlSyntaxError

lxml.etree.ParseError

lxml.etree.XMLSyntaxError

Syntax error while parsing an XML document.

389

Class ETCompatXMLParser Module lxml.etree

Methods

Inherited from lxml.etree.ParseError(Section B)

__init__()

Inherited from exceptions.SyntaxError

__new__(), __str__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.SyntaxError
filename, lineno, msg, offset, print_file_and_line, text
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’XMLSyntaxError’

Class ETCompatXMLParser

object

??._BaseParser

lxml.etree._FeedParser

lxml.etree.XMLParser

lxml.etree.ETCompatXMLParser

ETCompatXMLParser(self, encoding=None, attribute_defaults=False, dtd_validation=False,
load_dtd=False, no_network=True, ns_clean=False, recover=False, schema=None, huge_tree=False,

390

Class ETCompatXMLParser Module lxml.etree

remove_blank_text=False, resolve_entities=True, remove_comments=True, remove_pis=True,
strip_cdata=True, target=None, compact=True)

An XML parser with an ElementTree compatible default setup.

See the XMLParser class for details.

This parser has remove_comments and remove_pis enabled by default and thus ignores
comments and processing instructions.

Methods

__init__(self, encoding=None, attribute_defaults=False,
dtd_validation=False, load_dtd=False, no_network=True,
ns_clean=False, recover=False, schema=None, huge_tree=False,
remove_blank_text=False, resolve_entities=True, remove_comments=True,
remove_pis=True, strip_cdata=True, target=None, compact=True)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree._FeedParser

close(), feed()

Inherited from ??._BaseParser

copy(), makeelement(), setElementClassLookup(), set_element_class_lookup()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree._FeedParser
feed_error_log
Inherited from ??._BaseParser
error_log, resolvers, target, version
Inherited from object

continued on next page

391

Class XPath Module lxml.etree

Name Description
__class__

Class XPath

object

lxml.etree._XPathEvaluatorBase

lxml.etree.XPath

Known Subclasses: lxml.etree.ETXPath, lxml.cssselect.CSSSelector

XPath(self, path, namespaces=None, extensions=None, regexp=True, smart_strings=True) A
compiled XPath expression that can be called on Elements and ElementTrees.

Besides the XPath expression, you can pass prefix-namespace mappings and extension func-
tions to the constructor through the keyword arguments namespaces and extensions.
EXSLT regular expression support can be disabled with the ’regexp’ boolean keyword (defaults
to True). Smart strings will be returned for string results unless you pass smart_strings=False.

Methods

__call__(self, _etree_or_element, **_variables)

__init__(self, path, namespaces=None, extensions=None, regexp=True,
smart_strings=True)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

__repr__(x)

repr(x) Overrides: object.__repr__

Inherited from lxml.etree._XPathEvaluatorBase

evaluate()

392

Class XPathDocumentEvaluator Module lxml.etree

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
path The literal XPath expression.
Inherited from lxml.etree._XPathEvaluatorBase
error_log
Inherited from object
__class__

Class XPathDocumentEvaluator

object

lxml.etree._XPathEvaluatorBase

lxml.etree.XPathElementEvaluator

lxml.etree.XPathDocumentEvaluator

XPathDocumentEvaluator(self, etree, namespaces=None, extensions=None, regexp=True, smart_strings=True)
Create an XPath evaluator for an ElementTree.

Additional namespace declarations can be passed with the ’namespace’ keyword argument.
EXSLT regular expression support can be disabled with the ’regexp’ boolean keyword (defaults
to True). Smart strings will be returned for string results unless you pass smart_strings=False.

Methods

__call__(self, _path, **_variables)

Evaluate an XPath expression on the document.

Variables may be provided as keyword arguments. Note that namespaces are
currently not supported for variables. Overrides:
lxml.etree.XPathElementEvaluator.__call__

393

Class XPathError Module lxml.etree

__init__(self, etree, namespaces=None, extensions=None, regexp=True,
smart_strings=True)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.etree.XPathElementEvaluator

register_namespace(), register_namespaces()

Inherited from lxml.etree._XPathEvaluatorBase

evaluate()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.etree._XPathEvaluatorBase
error_log
Inherited from object
__class__

Class XPathError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.XPathError

394

Class XPathError Module lxml.etree

Known Subclasses: lxml.etree.XPathEvalError, lxml.etree.XPathSyntaxError

Base class of all XPath errors.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’XPathError’

395

Class XPathEvalError Module lxml.etree

Class XPathEvalError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.XPathError

lxml.etree.XPathEvalError

Known Subclasses: lxml.etree.XPathFunctionError, lxml.etree.XPathResultError

Error during XPath evaluation.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

396

Class XPathFunctionError Module lxml.etree

Name Description
__qualname__ Value: ’XPathEvalError’

Class XPathFunctionError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.XPathError

lxml.etree.XPathEvalError

lxml.etree.XPathFunctionError

Internal error looking up an XPath extension function.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object

continued on next page

397

Class XPathResultError Module lxml.etree

Name Description
__class__

Class Variables

Name Description
__qualname__ Value: ’XPathFunctionError’

Class XPathResultError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.XPathError

lxml.etree.XPathEvalError

lxml.etree.XPathResultError

Error handling an XPath result.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

398

Class XPathResultError Module lxml.etree

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’XPathResultError’

399

Class XPathSyntaxError Module lxml.etree

Class XPathSyntaxError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

object

exceptions.BaseException

exceptions.Exception

exceptions.StandardError

exceptions.SyntaxError

lxml.etree.LxmlSyntaxError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.XPathError

lxml.etree.XPathSyntaxError

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.SyntaxError

__new__(), __str__()

400

Class XSLT Module lxml.etree

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.SyntaxError
filename, lineno, msg, offset, print_file_and_line, text
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’XPathSyntaxError’

Class XSLT

object

lxml.etree.XSLT

XSLT(self, xslt_input, extensions=None, regexp=True, access_control=None)

Turn an XSL document into an XSLT object.

Calling this object on a tree or Element will execute the XSLT:

transform = etree.XSLT(xsl_tree)
result = transform(xml_tree)

Keyword arguments of the constructor:

∙ extensions: a dict mapping (namespace, name) pairs to extension functions or ex-
tension elements

∙ regexp: enable exslt regular expression support in XPath (default: True)

∙ access_control: access restrictions for network or file system (see XSLTAccessControl)

Keyword arguments of the XSLT call:

401

Class XSLT Module lxml.etree

∙ profile_run: enable XSLT profiling (default: False)

Other keyword arguments of the call are passed to the stylesheet as parameters.

Methods

__call__(self, _input, profile_run=False, **kw)

Execute the XSL transformation on a tree or Element.

Pass the profile_run option to get profile information about the XSLT. The
result of the XSLT will have a property xslt_profile that holds an XML tree with
profiling data.

__copy__(...)

__deepcopy__(...)

__init__(self, xslt_input, extensions=None, regexp=True,
access_control=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

apply(self, _input, profile_run=False, **kw)

Deprecated: call the object, not this method.

402

Class XSLT Module lxml.etree

set_global_max_depth(max_depth)

The maximum traversal depth that the stylesheet engine will allow. This does not
only count the template recursion depth but also takes the number of
variables/parameters into account. The required setting for a run depends on
both the stylesheet and the input data.

Example:

XSLT.set_global_max_depth(5000)

Note that this is currently a global, module-wide setting because libxslt does not
support it at a per-stylesheet level.

strparam(strval)

Mark an XSLT string parameter that requires quote escaping before passing it
into the transformation. Use it like this:

result = transform(doc, some_strval = XSLT.strparam(
’’’it’s "Monty Python’s" ...’’’))

Escaped string parameters can be reused without restriction.

tostring(self, result_tree)

Save result doc to string based on stylesheet output method. Deprecated: use
str(result_tree) instead.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
error_log The log of errors and warnings of an XSLT

execution.
Inherited from object
__class__

403

Class XSLTAccessControl Module lxml.etree

Class XSLTAccessControl

object

lxml.etree.XSLTAccessControl

XSLTAccessControl(self, read_file=True, write_file=True, create_dir=True, read_network=True,
write_network=True)

Access control for XSLT: reading/writing files, directories and network I/O. Access to a type
of resource is granted or denied by passing any of the following boolean keyword arguments.
All of them default to True to allow access.

∙ read_file

∙ write_file

∙ create_dir

∙ read_network

∙ write_network

For convenience, there is also a class member DENY_ALL that provides an XSLTAccessControl
instance that is readily configured to deny everything, and a DENY_WRITE member that denies
all write access but allows read access.

See XSLT.

Methods

__init__(self, read_file=True, write_file=True, create_dir=True,
read_network=True, write_network=True)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

__repr__(x)

repr(x) Overrides: object.__repr__

Inherited from object

404

Class XSLTApplyError Module lxml.etree

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
options The access control configuration as a map of

options.
Inherited from object
__class__

Class Variables

Name Description
DENY_ALL Value:

XSLTAccessControl(create_dir=False,
read_file=False, read...

DENY_WRITE Value:
XSLTAccessControl(create_dir=False,
read_file=True, read_...

Class XSLTApplyError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.XSLTError

lxml.etree.XSLTApplyError

Error running an XSL transformation.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

405

Class XSLTError Module lxml.etree

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’XSLTApplyError’

Class XSLTError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.XSLTError

Known Subclasses: lxml.etree.XSLTApplyError, lxml.etree.XSLTExtensionError, lxml.etree.XSLTParseError,
lxml.etree.XSLTSaveError

Base class of all XSLT errors.

406

Class XSLTExtension Module lxml.etree

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’XSLTError’

Class XSLTExtension

object

lxml.etree.XSLTExtension

Base class of an XSLT extension element.

Methods

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

407

Class XSLTExtension Module lxml.etree

apply_templates(self, context, node, output_parent=None,
elements_only=False, remove_blank_text=False)

Call this method to retrieve the result of applying templates to an element.

The return value is a list of elements or text strings that were generated by the
XSLT processor. If you pass elements_only=True, strings will be
discarded from the result list. The option remove_blank_text=True will
only discard strings that consist entirely of whitespace (e.g. formatting). These
options do not apply to Elements, only to bare string results.

If you pass an Element as output_parent parameter, the result will instead
be appended to the element (including attributes etc.) and the return value will
be None. This is a safe way to generate content into the output document
directly, without having to take care of special values like text or attributes. Note
that the string discarding options will be ignored in this case.

execute(self, context, self_node, input_node, output_parent)

Execute this extension element.

Subclasses must override this method. They may append elements to the
output_parent element here, or set its text content. To this end, the
input_node provides read-only access to the current node in the input
document, and the self_node points to the extension element in the
stylesheet.

Note that the output_parent parameter may be None if there is no parent
element in the current context (e.g. no content was added to the output tree yet).

408

Class XSLTExtensionError Module lxml.etree

process_children(self, context, output_parent=None, elements_only=False,
remove_blank_text=False)

Call this method to process the XSLT content of the extension element itself.

The return value is a list of elements or text strings that were generated by the
XSLT processor. If you pass elements_only=True, strings will be
discarded from the result list. The option remove_blank_text=True will
only discard strings that consist entirely of whitespace (e.g. formatting). These
options do not apply to Elements, only to bare string results.

If you pass an Element as output_parent parameter, the result will instead
be appended to the element (including attributes etc.) and the return value will
be None. This is a safe way to generate content into the output document
directly, without having to take care of special values like text or attributes. Note
that the string discarding options will be ignored in this case.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from object
__class__

Class XSLTExtensionError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.XSLTError

lxml.etree.XSLTExtensionError

Error registering an XSLT extension.

409

Class XSLTParseError Module lxml.etree

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’XSLTExtensionError’

Class XSLTParseError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.XSLTError

lxml.etree.XSLTParseError

410

Class XSLTParseError Module lxml.etree

Error parsing a stylesheet document.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
__qualname__ Value: ’XSLTParseError’

411

Class XSLTSaveError Module lxml.etree

Class XSLTSaveError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.etree.XSLTError

lxml.etree.XSLTSaveError

Error serialising an XSLT result.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables
continued on next page

412

Class iterparse Module lxml.etree

Name Description

Name Description
__qualname__ Value: ’XSLTSaveError’

Class iterparse

object

lxml.etree.iterparse

iterparse(self, source, events=(“end”,), tag=None, attribute_defaults=False, dtd_validation=False,
load_dtd=False, no_network=True, remove_blank_text=False, remove_comments=False, re-
move_pis=False, encoding=None, html=False, recover=None, huge_tree=False, schema=None)

Incremental parser.

Parses XML into a tree and generates tuples (event, element) in a SAX-like fashion. event is
any of ’start’, ’end’, ’start-ns’, ’end-ns’.

For ’start’ and ’end’, element is the Element that the parser just found opening or closing.
For ’start-ns’, it is a tuple (prefix, URI) of a new namespace declaration. For ’end-ns’, it is
simply None. Note that all start and end events are guaranteed to be properly nested.

The keyword argument events specifies a sequence of event type names that should be gen-
erated. By default, only ’end’ events will be generated.

The additional tag argument restricts the ’start’ and ’end’ events to those elements that match
the given tag. By default, events are generated for all elements. Note that the ’start-ns’ and
’end-ns’ events are not impacted by this restriction.

The other keyword arguments in the constructor are mainly based on the libxml2 parser con-
figuration. A DTD will also be loaded if validation or attribute default values are requested.

Available boolean keyword arguments:

∙ attribute_defaults: read default attributes from DTD

∙ dtd_validation: validate (if DTD is available)

∙ load_dtd: use DTD for parsing

∙ no_network: prevent network access for related files

∙ remove_blank_text: discard blank text nodes

∙ remove_comments: discard comments

∙ remove_pis: discard processing instructions

∙ strip_cdata: replace CDATA sections by normal text content (default: True)

∙ compact: safe memory for short text content (default: True)

413

Class iterparse Module lxml.etree

∙ resolve_entities: replace entities by their text value (default: True)

∙ huge_tree: disable security restrictions and support very deep trees and very long
text content (only affects libxml2 2.7+)

∙ html: parse input as HTML (default: XML)

∙ recover: try hard to parse through broken input (default: True for HTML, False
otherwise)

Other keyword arguments:

∙ encoding: override the document encoding

∙ schema: an XMLSchema to validate against

Methods

__init__(self, source, events=("end",), tag=None,
attribute_defaults=False, dtd_validation=False, load_dtd=False,
no_network=True, remove_blank_text=False, remove_comments=False,
remove_pis=False, encoding=None, html=False, recover=None,
huge_tree=False, schema=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__iter__(x)

iter(x)

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

__next__(...)

makeelement(self, _tag, attrib=None, nsmap=None, **_extra)

Creates a new element associated with this parser.

414

Class iterwalk Module lxml.etree

next(x)

Return Value
the next value, or raise StopIteration

set_element_class_lookup(self, lookup=None)

Set a lookup scheme for element classes generated from this parser.

Reset it by passing None or nothing.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
error_log The error log of the last (or current) parser run.
resolvers The custom resolver registry of the last (or

current) parser run.
root
version The version of the underlying XML parser.
Inherited from object
__class__

Class iterwalk

object

lxml.etree.iterwalk

iterwalk(self, element_or_tree, events=(“end”,), tag=None)

A tree walker that generates events from an existing tree as if it was parsing XML data with
iterparse().

Methods

__init__(self, element_or_tree, events=("end",), tag=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

415

Class iterwalk Module lxml.etree

__iter__(x)

iter(x)

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

__next__(...)

next(x)

Return Value
the next value, or raise StopIteration

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from object
__class__

416

Package lxml.html

Package lxml.html

The lxml.html tool set for HTML handling.

Modules

∙ ElementSoup: Legacy interface to the BeautifulSoup HTML parser.
(Section B, p. 422)

∙ _setmixin (Section ??, p. ??)
∙ builder: A set of HTML generator tags for building HTML documents.

(Section B, p. 423)
∙ clean: A cleanup tool for HTML.

(Section B, p. 426)
∙ defs (Section B, p. 430)
∙ diff (Section B, p. 432)
∙ formfill (Section B, p. 433)
∙ html5parser: An interface to html5lib that mimics the lxml.html interface.

(Section B, p. 435)
∙ soupparser: External interface to the BeautifulSoup HTML parser.

(Section B, p. 438)
∙ usedoctest: Doctest module for HTML comparison.

(Section B, p. 439)

Functions

document_fromstring(html, parser=None, ensure_head_body=False, **kw)

fragments_fromstring(html, no_leading_text=False, base_url=None,
parser=None, **kw)

Parses several HTML elements, returning a list of elements.

The first item in the list may be a string (though leading whitespace is removed).
If no_leading_text is true, then it will be an error if there is leading text, and it
will always be a list of only elements.

base_url will set the document’s base_url attribute (and the tree’s docinfo.URL)

417

Functions Package lxml.html

fragment_fromstring(html, create_parent=False, base_url=None,
parser=None, **kw)

Parses a single HTML element; it is an error if there is more than one element, or
if anything but whitespace precedes or follows the element.

If create_parent is true (or is a tag name) then a parent node will be created to
encapsulate the HTML in a single element. In this case, leading or trailing text is
allowed.

base_url will set the document’s base_url attribute (and the tree’s docinfo.URL)

fromstring(html, base_url=None, parser=None, **kw)

Parse the html, returning a single element/document.

This tries to minimally parse the chunk of text, without knowing if it is a
fragment or a document.

base_url will set the document’s base_url attribute (and the tree’s docinfo.URL)

parse(filename_or_url, parser=None, base_url=None, **kw)

Parse a filename, URL, or file-like object into an HTML document tree. Note:
this returns a tree, not an element. Use parse(...).getroot() to get the
document root.

You can override the base URL with the base_url keyword. This is most
useful when parsing from a file-like object.

418

Functions Package lxml.html

submit_form(form, extra_values=None, open_http=None)

Helper function to submit a form. Returns a file-like object, as from
urllib.urlopen(). This object also has a .geturl() function, which
shows the URL if there were any redirects.

You can use this like:

form = doc.forms[0]
form.inputs[’foo’].value = ’bar’ # etc
response = form.submit()
doc = parse(response)
doc.make_links_absolute(response.geturl())

To change the HTTP requester, pass a function as open_http keyword
argument that opens the URL for you. The function must have the following
signature:

open_http(method, URL, values)

The action is one of ’GET’ or ’POST’, the URL is the target URL as a string,
and the values are a sequence of (name, value) tuples with the form data.

419

Functions Package lxml.html

tostring(doc, pretty_print=False, include_meta_content_type=False,
encoding=None, method=’html’, with_tail=True, doctype=None)

Return an HTML string representation of the document.

Note: if include_meta_content_type is true this will create a <meta
http-equiv="Content-Type" ...> tag in the head; regardless of the
value of include_meta_content_type any existing <meta
http-equiv="Content-Type" ...> tag will be removed

The encoding argument controls the output encoding (defauts to ASCII, with
&#...; character references for any characters outside of ASCII). Note that you
can pass the name ’unicode’ as encoding argument to serialise to a
Unicode string.

The method argument defines the output method. It defaults to ’html’, but can
also be ’xml’ for xhtml output, or ’text’ to serialise to plain text without markup.

To leave out the tail text of the top-level element that is being serialised, pass
with_tail=False.

The doctype option allows passing in a plain string that will be serialised
before the XML tree. Note that passing in non well-formed content here will
make the XML output non well-formed. Also, an existing doctype in the
document tree will not be removed when serialising an ElementTree instance.

Example:

>>> from lxml import html
>>> root = html.fragment_fromstring(’<p>Hello
world!</p>’)

>>> html.tostring(root)
’<p>Hello
world!</p>’
>>> html.tostring(root, method=’html’)
’<p>Hello
world!</p>’

>>> html.tostring(root, method=’xml’)
’<p>Hello
world!</p>’

>>> html.tostring(root, method=’text’)
’Helloworld!’

>>> html.tostring(root, method=’text’, encoding=’unicode’)
u’Helloworld!’

>>> root = html.fragment_fromstring(’<div><p>Hello
world!</p>TAIL</div>’)
>>> html.tostring(root[0], method=’text’, encoding=’unicode’)
u’Helloworld!TAIL’

>>> html.tostring(root[0], method=’text’, encoding=’unicode’, with_tail=False)
u’Helloworld!’

>>> doc = html.document_fromstring(’<p>Hello
world!</p>’)
>>> html.tostring(doc, method=’html’, encoding=’unicode’)
u’<html><body><p>Hello
world!</p></body></html>’

>>> print(html.tostring(doc, method=’html’, encoding=’unicode’,
... doctype=’<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"’
... ’ "http://www.w3.org/TR/html4/strict.dtd">’))
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html><body><p>Hello
world!</p></body></html>

420

Variables Package lxml.html

open_in_browser(doc, encoding=None)

Open the HTML document in a web browser, saving it to a temporary file to
open it. Note that this does not delete the file after use. This is mainly meant for
debugging.

Element(*args, **kw)

Create a new HTML Element.

This can also be used for XHTML documents.

Variables

Name Description
find_rel_links Value:

_MethodFunc(’find_rel_links’,
copy= False)

find_class Value: _MethodFunc(’find_class’,
copy= False)

make_links_absolute Value:
_MethodFunc(’make_links_absolute’,
copy= True)

resolve_base_href Value:
_MethodFunc(’resolve_base_href’,
copy= True)

iterlinks Value: _MethodFunc(’iterlinks’,
copy= False)

rewrite_links Value:
_MethodFunc(’rewrite_links’,
copy= True)

421

Module lxml.html.ElementSoup

Module lxml.html.ElementSoup

Legacy interface to the BeautifulSoup HTML parser.

Functions

convert_tree(beautiful_soup_tree, makeelement=None)

Convert a BeautifulSoup tree to a list of Element trees.

Returns a list instead of a single root Element to support HTML-like soup with
more than one root element.

You can pass a different Element factory through the makeelement keyword.

parse(file, beautifulsoup=None, makeelement=None)

422

Module lxml.html.builder

Module lxml.html.builder

A set of HTML generator tags for building HTML documents.

Usage:

>>> from lxml.html.builder import *
>>> html = HTML(
... HEAD(TITLE("Hello World")),
... BODY(CLASS("main"),
... H1("Hello World !")
...)
...)

>>> import lxml.etree
>>> print lxml.etree.tostring(html, pretty_print=True)
<html>

<head>
<title>Hello World</title>

</head>
<body class="main">

<h1>Hello World !</h1>
</body>

</html>

Functions

CLASS(v)

FOR(v)

Variables

Name Description
E Value: ElementMaker(makeelement=

html_parser.makeelement)
A Value: E.a
ABBR Value: E.abbr
ACRONYM Value: E.acronym
ADDRESS Value: E.address
APPLET Value: E.applet
AREA Value: E.area
B Value: E.b
BASE Value: E.base
BASEFONT Value: E.basefont

continued on next page

423

Variables Module lxml.html.builder

Name Description
BDO Value: E.bdo
BIG Value: E.big
BLOCKQUOTE Value: E.blockquote
BODY Value: E.body
BR Value: E.br
BUTTON Value: E.button
CAPTION Value: E.caption
CENTER Value: E.center
CITE Value: E.cite
CODE Value: E.code
COL Value: E.col
COLGROUP Value: E.colgroup
DD Value: E.dd
DEL Value: getattr(E, ’del’)
DFN Value: E.dfn
DIR Value: E.dir
DIV Value: E.div
DL Value: E.dl
DT Value: E.dt
EM Value: E.em
FIELDSET Value: E.fieldset
FONT Value: E.font
FORM Value: E.form
FRAME Value: E.frame
FRAMESET Value: E.frameset
H1 Value: E.h1
H2 Value: E.h2
H3 Value: E.h3
H4 Value: E.h4
H5 Value: E.h5
H6 Value: E.h6
HEAD Value: E.head
HR Value: E.hr
HTML Value: E.html
I Value: E.i
IFRAME Value: E.iframe
IMG Value: E.img
INPUT Value: E.input
INS Value: E.ins
ISINDEX Value: E.isindex
KBD Value: E.kbd
LABEL Value: E.label
LEGEND Value: E.legend
LI Value: E.li
LINK Value: E.link
MAP Value: E.map

continued on next page

424

Variables Module lxml.html.builder

Name Description
MENU Value: E.menu
META Value: E.meta
NOFRAMES Value: E.noframes
NOSCRIPT Value: E.noscript
OBJECT Value: E.object
OL Value: E.ol
OPTGROUP Value: E.optgroup
OPTION Value: E.option
P Value: E.p
PARAM Value: E.param
PRE Value: E.pre
Q Value: E.q
S Value: E.s
SAMP Value: E.samp
SCRIPT Value: E.script
SELECT Value: E.select
SMALL Value: E.small
SPAN Value: E.span
STRIKE Value: E.strike
STRONG Value: E.strong
STYLE Value: E.style
SUB Value: E.sub
SUP Value: E.sup
TABLE Value: E.table
TBODY Value: E.tbody
TD Value: E.td
TEXTAREA Value: E.textarea
TFOOT Value: E.tfoot
TH Value: E.th
THEAD Value: E.thead
TITLE Value: E.title
TR Value: E.tr
TT Value: E.tt
U Value: E.u
UL Value: E.ul
VAR Value: E.var
__package__ Value: ’lxml.html’

425

Module lxml.html.clean

Module lxml.html.clean

A cleanup tool for HTML.

Removes unwanted tags and content. See the Cleaner class for details.

Functions

autolink(el, link_regexes=_link_regexes,
avoid_elements=_avoid_elements, avoid_hosts=_avoid_hosts,
avoid_classes=_avoid_classes)

Turn any URLs into links.

It will search for links identified by the given regular expressions (by default
mailto and http(s) links).

It won’t link text in an element in avoid_elements, or an element with a class in
avoid_classes. It won’t link to anything with a host that matches one of the
regular expressions in avoid_hosts (default localhost and 127.0.0.1).

If you pass in an element, the element’s tail will not be substituted, only the
contents of the element.

autolink_html(html, *args, **kw)

word_break(el, max_width=40,
avoid_elements=_avoid_word_break_elements,
avoid_classes=_avoid_word_break_classes,
break_character=unichr(0x200b))

Breaks any long words found in the body of the text (not attributes).

Doesn’t effect any of the tags in avoid_elements, by default <textarea> and
<pre>

Breaks words by inserting ​, which is a unicode character for Zero Width
Space character. This generally takes up no space in rendering, but does copy as
a space, and in monospace contexts usually takes up space.

See http://www.cs.tut.fi/~jkorpela/html/nobr.html for a
discussion

word_break_html(html, *args, **kw)

426

http://www.cs.tut.fi/~jkorpela/html/nobr.html

Class Cleaner Module lxml.html.clean

Variables

Name Description
clean Value: Cleaner()
clean_html Value: clean.clean_html

Class Cleaner

object

lxml.html.clean.Cleaner

Instances cleans the document of each of the possible offending elements. The cleaning is
controlled by attributes; you can override attributes in a subclass, or set them in the constructor.

scripts: Removes any <script> tags.

javascript: Removes any Javascript, like an onclick attribute. Also removes stylesheets
as they could contain Javascript.

comments: Removes any comments.

style: Removes any style tags or attributes.

links: Removes any <link> tags

meta: Removes any <meta> tags

page_structure: Structural parts of a page: <head>, <html>, <title>.

processing_instructions: Removes any processing instructions.

embedded: Removes any embedded objects (flash, iframes)

frames: Removes any frame-related tags

forms: Removes any form tags

annoying_tags: Tags that aren’t wrong, but are annoying. <blink> and <marquee>

remove_tags: A list of tags to remove. Only the tags will be removed, their content will
get pulled up into the parent tag.

kill_tags: A list of tags to kill. Killing also removes the tag’s content, i.e. the whole
subtree, not just the tag itself.

allow_tags: A list of tags to include (default include all).

remove_unknown_tags: Remove any tags that aren’t standard parts of HTML.

safe_attrs_only: If true, only include ’safe’ attributes (specifically the list from the feed-
parser HTML sanitisation web site).

safe_attrs: A set of attribute names to override the default list of attributes considered

427

Class Cleaner Module lxml.html.clean

’safe’ (when safe_attrs_only=True).

add_nofollow: If true, then any <a> tags will have rel="nofollow" added to them.

host_whitelist: A list or set of hosts that you can use for embedded content (for content
like <object>, <link rel="stylesheet">, etc). You can also implement/override
the method allow_embedded_url(el, url) or allow_element(el) to im-
plement more complex rules for what can be embedded. Anything that passes this test
will be shown, regardless of the value of (for instance) embedded.

Note that this parameter might not work as intended if you do not make the links absolute
before doing the cleaning.

Note that you may also need to set whitelist_tags.

whitelist_tags: A set of tags that can be included with host_whitelist. The default
is iframe and embed; you may wish to include other tags like script, or you may
want to implement allow_embedded_url for more control. Set to None to include
all tags.

This modifies the document in place.

Methods

__init__(self, **kw)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, doc)

Cleans the document.

allow_follow(self, anchor)

Override to suppress rel=“nofollow” on some anchors.

allow_element(self, el)

allow_embedded_url(self, el, url)

428

Class Cleaner Module lxml.html.clean

kill_conditional_comments(self, doc)

IE conditional comments basically embed HTML that the parser doesn’t
normally see. We can’t allow anything like that, so we’ll kill any comments that
could be conditional.

clean_html(self, html)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from object
__class__

Class Variables

Name Description
scripts Value: True
javascript Value: True
comments Value: True
style Value: False
links Value: True
meta Value: True
page_structure Value: True
processing_instructions Value: True
embedded Value: True
frames Value: True
forms Value: True
annoying_tags Value: True
remove_tags Value: None
allow_tags Value: None
kill_tags Value: None
remove_unknown_tags Value: True
safe_attrs_only Value: True
safe_attrs Value: frozenset([’abbr’,

’accept’, ’accept-charset’,
’accesskey...

add_nofollow Value: False
host_whitelist Value: ()
whitelist_tags Value: set([’iframe’, ’embed’])

429

Module lxml.html.defs

Module lxml.html.defs

Variables

Name Description
empty_tags Value: frozenset([’area’, ’base’,

’basefont’, ’br’, ’col’,
’fram...

deprecated_tags Value: frozenset([’applet’,
’basefont’, ’center’, ’dir’,
’font’,...

link_attrs Value: frozenset([’action’,
’archive’, ’background’, ’cite’,
’cl...

event_attrs Value: frozenset([’onblur’,
’onchange’, ’onclick’,
’ondblclick’,...

safe_attrs Value: frozenset([’abbr’,
’accept’, ’accept-charset’,
’accesskey...

top_level_tags Value: frozenset([’body’,
’frameset’, ’head’, ’html’])

head_tags Value: frozenset([’base’,
’isindex’, ’link’, ’meta’,
’script’, ’...

general_block_tags Value: frozenset([’address’,
’blockquote’, ’center’, ’del’,
’div...

list_tags Value: frozenset([’dd’, ’dir’,
’dl’, ’dt’, ’li’, ’menu’, ’ol’,
’...

table_tags Value: frozenset([’caption’,
’col’, ’colgroup’, ’table’,
’tbody’...

block_tags Value: frozenset([’address’,
’blockquote’, ’caption’,
’center’, ...

form_tags Value: frozenset([’button’,
’fieldset’, ’form’, ’input’,
’label’...

special_inline_tags Value: frozenset([’a’, ’applet’,
’area’, ’basefont’, ’bdo’,
’br’...

phrase_tags Value: frozenset([’abbr’,
’acronym’, ’cite’, ’code’,
’del’, ’dfn...

continued on next page

430

Variables Module lxml.html.defs

Name Description
font_style_tags Value: frozenset([’b’, ’big’, ’i’,

’s’, ’small’, ’strike’, ’tt’,...
frame_tags Value: frozenset([’frame’,

’frameset’, ’noframes’])
html5_tags Value: frozenset([’article’,

’aside’, ’audio’, ’canvas’,
’comman...

nonstandard_tags Value: frozenset([’blink’,
’marquee’])

tags Value: frozenset([’a’, ’abbr’,
’acronym’, ’address’, ’applet’,
’...

__package__ Value: None

431

Module lxml.html.diff

Module lxml.html.diff

Functions

html_annotate(doclist, markup=<function default_markup at
0x2aece8613668>)

doclist should be ordered from oldest to newest, like:

>>> version1 = ’Hello World’
>>> version2 = ’Goodbye World’
>>> print(html_annotate([(version1, ’version 1’),
... (version2, ’version 2’)]))
Goodbye World

The documents must be fragments (str/UTF8 or unicode), not complete
documents

The markup argument is a function to markup the spans of words. This function
is called like markup(’Hello’, ’version 2’), and returns HTML. The first
argument is text and never includes any markup. The default uses a span with a
title:

>>> print(default_markup(’Some Text’, ’by Joe’))
Some Text

htmldiff(old_html, new_html)

Do a diff of the old and new document. The documents are HTML fragments
(str/UTF8 or unicode), they are not complete documents (i.e., no <html> tag).

Returns HTML with <ins> and tags added around the appropriate text.

Markup is generally ignored, with the markup from new_html preserved, and
possibly some markup from old_html (though it is considered acceptable to lose
some of the old markup). Only the words in the HTML are diffed. The exception
is tags, which are treated like words, and the href attribute of <a> tags,
which are noted inside the tag itself when there are changes.

432

Module lxml.html.formfill

Module lxml.html.formfill

Functions

fill_form(el, values, form_id=None, form_index=None)

fill_form_html(html, values, form_id=None, form_index=None)

insert_errors(el, errors, form_id=None, form_index=None,
error_class=’error’, error_creator=default_error_creator)

insert_errors_html(html, values, **kw)

Class FormNotFound

object

exceptions.BaseException

exceptions.Exception

exceptions.StandardError

exceptions.LookupError

lxml.html.formfill.FormNotFound

Raised when no form can be found

Methods

Inherited from exceptions.LookupError

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

433

Class DefaultErrorCreator Module lxml.html.formfill

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class DefaultErrorCreator

object

lxml.html.formfill.DefaultErrorCreator

Methods

__init__(self, **kw)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, el, is_block, message)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from object
__class__

Class Variables

Name Description
insert_before Value: True
block_inside Value: True
error_container_tag Value: ’div’
error_message_class Value: ’error-message’
error_block_class Value: ’error-block’
default_message Value: ’Invalid’

434

Module lxml.html.html5parser

Module lxml.html.html5parser

An interface to html5lib that mimics the lxml.html interface.

Functions

document_fromstring(html, guess_charset=True, parser=None)

Parse a whole document into a string.

fragments_fromstring(html, no_leading_text=False, guess_charset=False,
parser=None)

Parses several HTML elements, returning a list of elements.

The first item in the list may be a string. If no_leading_text is true, then it will be
an error if there is leading text, and it will always be a list of only elements.

If guess_charset is True and the text was not unicode but a bytestring, the
chardet library will perform charset guessing on the string.

fragment_fromstring(html, create_parent=False, guess_charset=False,
parser=None)

Parses a single HTML element; it is an error if there is more than one element, or
if anything but whitespace precedes or follows the element.

If create_parent is true (or is a tag name) then a parent node will be created to
encapsulate the HTML in a single element. In this case, leading or trailing text is
allowed.

fromstring(html, guess_charset=True, parser=None)

Parse the html, returning a single element/document.

This tries to minimally parse the chunk of text, without knowing if it is a
fragment or a document.

base_url will set the document’s base_url attribute (and the tree’s docinfo.URL)

435

Class HTMLParser Module lxml.html.html5parser

parse(filename_url_or_file, guess_charset=True, parser=None)

Parse a filename, URL, or file-like object into an HTML document tree. Note:
this returns a tree, not an element. Use parse(...).getroot() to get the
document root.

Variables

Name Description
xhtml_parser Value: XHTMLParser()
html_parser Value: HTMLParser()
__package__ Value: ’lxml.html’

Class HTMLParser

object

html5lib.html5parser.HTMLParser

lxml.html.html5parser.HTMLParser

An html5lib HTML parser with lxml as tree.

Methods

__init__(self, strict=False, **kwargs)

strict - raise an exception when a parse error is encountered

tree - a treebuilder class controlling the type of tree that will be returned. Built in
treebuilders can be accessed through
html5lib.treebuilders.getTreeBuilder(treeType)

tokenizer - a class that provides a stream of tokens to the treebuilder. This may
be replaced for e.g. a sanitizer which converts some tags to text Overrides:
object.__init__ extit(inherited documentation)

Inherited from html5lib.html5parser.HTMLParser

adjustForeignAttributes(), adjustMathMLAttributes(), adjustSVGAttributes(), isHTM-
LIntegrationPoint(), isMathMLTextIntegrationPoint(), mainLoop(), normalizeToken(),
normalizedTokens(), parse(), parseError(), parseFragment(), parseRCDataRawtext(),
reparseTokenNormal(), reset(), resetInsertionMode()

Inherited from object

436

Class XHTMLParser Module lxml.html.html5parser

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from object
__class__

Class XHTMLParser

html5lib.XHTMLParser

lxml.html.html5parser.XHTMLParser

An html5lib XHTML Parser with lxml as tree.

Methods

__init__(self, strict=False, **kwargs)

437

Module lxml.html.soupparser

Module lxml.html.soupparser

External interface to the BeautifulSoup HTML parser.

Functions

fromstring(data, beautifulsoup=None, makeelement=None, **bsargs)

Parse a string of HTML data into an Element tree using the BeautifulSoup parser.

Returns the root <html> Element of the tree.

You can pass a different BeautifulSoup parser through the beautifulsoup
keyword, and a diffent Element factory function through the makeelement
keyword. By default, the standard BeautifulSoup class and the default
factory of lxml.html are used.

parse(file, beautifulsoup=None, makeelement=None, **bsargs)

Parse a file into an ElemenTree using the BeautifulSoup parser.

You can pass a different BeautifulSoup parser through the beautifulsoup
keyword, and a diffent Element factory function through the makeelement
keyword. By default, the standard BeautifulSoup class and the default
factory of lxml.html are used.

convert_tree(beautiful_soup_tree, makeelement=None)

Convert a BeautifulSoup tree to a list of Element trees.

Returns a list instead of a single root Element to support HTML-like soup with
more than one root element.

You can pass a different Element factory through the makeelement keyword.

438

Module lxml.html.usedoctest

Module lxml.html.usedoctest

Doctest module for HTML comparison.

Usage:

>>> import lxml.html.usedoctest
>>> # now do your HTML doctests ...

See lxml.doctestcompare.

439

Variables Package lxml.includes

Package lxml.includes

Variables

Name Description
__package__ Value: None

440

Package lxml.isoschematron

Package lxml.isoschematron

The lxml.isoschematron package implements ISO Schematron support on top of the
pure-xslt ’skeleton’ implementation.

Functions

stylesheet_params(**kwargs)

Convert keyword args to a dictionary of stylesheet parameters. XSL stylesheet
parameters must be XPath expressions, i.e.:

∙ string expressions, like “’5”’

∙ simple (number) expressions, like “5”

∙ valid XPath expressions, like “/a/b/text()”

This function converts native Python keyword arguments to stylesheet
parameters following these rules: If an arg is a string wrap it with
XSLT.strparam(). If an arg is an XPath object use its path string. If arg is None
raise TypeError. Else convert arg to string.

Variables

Name Description
extract_xsd Value:

_etree.XSLT(_etree.parse(os.path.join(_resources_dir,
’xs...

extract_rng Value:
_etree.XSLT(_etree.parse(os.path.join(_resources_dir,
’xs...

iso_dsdl_include Value:
_etree.XSLT(_etree.parse(os.path.join(_resources_dir,
’xs...

iso_abstract_expand Value:
_etree.XSLT(_etree.parse(os.path.join(_resources_dir,
’xs...

iso_svrl_for_xslt1 Value:
_etree.XSLT(_etree.parse(os.path.join(_resources_dir,
’xs...

svrl_validation_errors Value: //svrl:failed-assert
schematron_schema_valid Value:

_etree.RelaxNG(_etree.parse(os.path.join(_resources_dir,
...

continued on next page

441

Class Schematron Package lxml.isoschematron

Name Description

Class Schematron

object

lxml.etree._Validator

lxml.isoschematron.Schematron

An ISO Schematron validator.

Pass a root Element or an ElementTree to turn it into a validator. Alternatively, pass a filename
as keyword argument ’file’ to parse from the file system. Built on the Schematron language
’reference’ skeleton pure-xslt implementation, the validator is created as an XSLT 1.0 stylesheet
using these steps:

0) (Extract from XML Schema or RelaxNG schema)

1) Process inclusions

2) Process abstract patterns

3) Compile the schematron schema to XSLT

The include and expand keyword arguments can be used to switch off steps 1) and 2).
To set parameters for steps 1), 2) and 3) hand parameter dictionaries to the keyword argu-
ments include_params, expand_params or compile_params. For convenience, the
compile-step parameter phase is also exposed as a keyword argument phase. This takes
precedence if the parameter is also given in the parameter dictionary. If store_schematron
is set to True, the (included-and-expanded) schematron document tree is stored and available
through the schematron property. If store_xslt is set to True, the validation XSLT doc-
ument tree will be stored and can be retrieved through the validator_xslt property. With
store_report set to True (default: False), the resulting validation report document gets
stored and can be accessed as the validation_report property.

Schematron is a less well known, but very powerful schema language. The main idea is to use
the capabilities of XPath to put restrictions on the structure and the content of XML documents.
Here is a simple example:

>>> from lxml import isoschematron
>>> schematron = isoschematron.Schematron(etree.XML(’’’
... <schema xmlns="http://purl.oclc.org/dsdl/schematron" >
... <pattern id="id_only_attribute">
... <title>id is the only permitted attribute name</title>
... <rule context="*">
... <report test="@*[not(name()=’id’)]">Attribute
... <name path="@*[not(name()=’id’)]"/> is forbidden<name/>
... </report>
... </rule>

442

Class Schematron Package lxml.isoschematron

... </pattern>

... </schema>

... ’’’))

>>> xml = etree.XML(’’’
... <AAA name="aaa">
... <BBB id="bbb"/>
... <CCC color="ccc"/>
... </AAA>
... ’’’)

>>> schematron.validate(xml)
0

>>> xml = etree.XML(’’’
... <AAA id="aaa">
... <BBB id="bbb"/>
... <CCC/>
... </AAA>
... ’’’)

>>> schematron.validate(xml)
1

Methods

__init__(self, etree=None, file=None, include=True, expand=True,
include_params={}, expand_params={}, compile_params={},
store_schematron=False, store_xslt=False, store_report=False,
phase=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, etree)

Validate doc using Schematron.

Returns true if document is valid, false if not.

Inherited from lxml.etree._Validator

__new__(), assertValid(), assert_(), validate()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),

443

Class Schematron Package lxml.isoschematron

__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
schematron ISO-schematron schema document (None if

object has been initialized with
store_schematron=False).

validator_xslt ISO-schematron skeleton implementation XSLT
validator document (None if object has been
initialized with store_xslt=False).

validation_report ISO-schematron validation result report (None if
result-storing has been turned off).

Inherited from lxml.etree._Validator
error_log
Inherited from object
__class__

444

Module lxml.objectify

Module lxml.objectify

The lxml.objectify module implements a Python object API for XML. It is based on
lxml.etree. Version: 2.3.6

Functions

DataElement(_value, attrib=None, nsmap=None, _pytype=None, _xsi=None,
**_attributes)

Create a new element from a Python value and XML attributes taken from
keyword arguments or a dictionary passed as second argument.

Automatically adds a ’pytype’ attribute for the Python type of the value, if the
type can be identified. If ’_pytype’ or ’_xsi’ are among the keyword arguments,
they will be used instead.

If the _value argument is an ObjectifiedDataElement instance, its py:pytype,
xsi:type and other attributes and nsmap are reused unless they are redefined in
attrib and/or keyword arguments.

Element(_tag, attrib=None, nsmap=None, _pytype=None, **_attributes)

Objectify specific version of the lxml.etree Element() factory that always creates
a structural (tree) element.

NOTE: requires parser based element class lookup activated in lxml.etree!

SubElement(_parent, _tag, attrib=None, nsmap=None, **_extra)

Subelement factory. This function creates an element instance, and appends it to
an existing element.

445

Functions Module lxml.objectify

XML(xml, parser=None, base_url=None)

Objectify specific version of the lxml.etree XML() literal factory that uses the
objectify parser.

You can pass a different parser as second argument.

The base_url keyword argument allows to set the original base URL of the
document to support relative Paths when looking up external entities (DTD,
XInclude, ...).

annotate(element_or_tree, ignore_old=True, ignore_xsi=False,
empty_pytype=None, empty_type=None, annotate_xsi=0, annotate_pytype=1)

Recursively annotates the elements of an XML tree with ’xsi:type’ and/or
’py:pytype’ attributes.

If the ’ignore_old’ keyword argument is True (the default), current ’py:pytype’
attributes will be ignored for the type annotation. Set to False if you want reuse
existing ’py:pytype’ information (iff appropriate for the element text value).

If the ’ignore_xsi’ keyword argument is False (the default), existing ’xsi:type’
attributes will be used for the type annotation, if they fit the element text values.

Note that the mapping from Python types to XSI types is usually ambiguous.
Currently, only the first XSI type name in the corresponding PyType definition
will be used for annotation. Thus, you should consider naming the widest type
first if you define additional types.

The default ’py:pytype’ annotation of empty elements can be set with the
empty_pytype keyword argument. Pass ’str’, for example, to make string
values the default.

The default ’xsi:type’ annotation of empty elements can be set with the
empty_type keyword argument. The default is not to annotate empty
elements. Pass ’string’, for example, to make string values the default.

The keyword arguments ’annotate_xsi’ (default: 0) and ’annotate_pytype’
(default: 1) control which kind(s) of annotation to use.

446

Functions Module lxml.objectify

deannotate(element_or_tree, pytype=True, xsi=True, xsi_nil=False,
cleanup_namespaces=False)

Recursively de-annotate the elements of an XML tree by removing ’py:pytype’
and/or ’xsi:type’ attributes and/or ’xsi:nil’ attributes.

If the ’pytype’ keyword argument is True (the default), ’py:pytype’ attributes
will be removed. If the ’xsi’ keyword argument is True (the default), ’xsi:type’
attributes will be removed. If the ’xsi_nil’ keyword argument is True (default:
False), ’xsi:nil’ attributes will be removed.

Note that this does not touch the namespace declarations by default. If you want
to remove unused namespace declarations from the tree, pass the option
cleanup_namespaces=True.

dump(...)

dump(_Element element not None)

Return a recursively generated string representation of an element.

enable_recursive_str(on=True)

Enable a recursively generated tree representation for str(element), based on
objectify.dump(element).

fromstring(xml, parser=None, base_url=None)

Objectify specific version of the lxml.etree fromstring() function that uses the
objectify parser.

You can pass a different parser as second argument.

The base_url keyword argument allows to set the original base URL of the
document to support relative Paths when looking up external entities (DTD,
XInclude, ...).

447

Functions Module lxml.objectify

getRegisteredTypes()

Returns a list of the currently registered PyType objects.

To add a new type, retrieve this list and call unregister() for all entries. Then add
the new type at a suitable position (possibly replacing an existing one) and call
register() for all entries.

This is necessary if the new type interferes with the type check functions of
existing ones (normally only int/float/bool) and must the tried before other types.
To add a type that is not yet parsable by the current type check functions, you
can simply register() it, which will append it to the end of the type list.

makeparser(remove_blank_text=True, **kw)

Create a new XML parser for objectify trees.

You can pass all keyword arguments that are supported by
etree.XMLParser(). Note that this parser defaults to removing blank text.
You can disable this by passing the remove_blank_text boolean keyword
option yourself.

parse(f, parser=None, base_url=None)

Parse a file or file-like object with the objectify parser.

You can pass a different parser as second argument.

The base_url keyword allows setting a URL for the document when parsing
from a file-like object. This is needed when looking up external entities (DTD,
XInclude, ...) with relative paths.

448

Functions Module lxml.objectify

pyannotate(element_or_tree, ignore_old=False, ignore_xsi=False,
empty_pytype=None)

Recursively annotates the elements of an XML tree with ’pytype’ attributes.

If the ’ignore_old’ keyword argument is True (the default), current ’pytype’
attributes will be ignored and replaced. Otherwise, they will be checked and only
replaced if they no longer fit the current text value.

Setting the keyword argument ignore_xsi to True makes the function
additionally ignore existing xsi:type annotations. The default is to use them
as a type hint.

The default annotation of empty elements can be set with the empty_pytype
keyword argument. The default is not to annotate empty elements. Pass ’str’, for
example, to make string values the default.

pytypename(obj)

Find the name of the corresponding PyType for a Python object.

set_default_parser(new_parser=None)

Replace the default parser used by objectify’s Element() and fromstring()
functions.

The new parser must be an etree.XMLParser.

Call without arguments to reset to the original parser.

set_pytype_attribute_tag(attribute_tag=None)

Change name and namespace of the XML attribute that holds Python type
information.

Do not use this unless you know what you are doing.

Reset by calling without argument.

Default:
“{http://codespeak.net/lxml/objectify/pytype}pytype”

449

http://codespeak.net/lxml/objectify/pytype

Variables Module lxml.objectify

xsiannotate(element_or_tree, ignore_old=False, ignore_pytype=False,
empty_type=None)

Recursively annotates the elements of an XML tree with ’xsi:type’ attributes.

If the ’ignore_old’ keyword argument is True (the default), current ’xsi:type’
attributes will be ignored and replaced. Otherwise, they will be checked and only
replaced if they no longer fit the current text value.

Note that the mapping from Python types to XSI types is usually ambiguous.
Currently, only the first XSI type name in the corresponding PyType definition
will be used for annotation. Thus, you should consider naming the widest type
first if you define additional types.

Setting the keyword argument ignore_pytype to True makes the function
additionally ignore existing pytype annotations. The default is to use them as a
type hint.

The default annotation of empty elements can be set with the empty_type
keyword argument. The default is not to annotate empty elements. Pass ’string’,
for example, to make string values the default.

Variables

Name Description
E Value:

<lxml.objectify.ElementMaker
object at 0x2aece72dab30>

PYTYPE_ATTRIBUTE Value:
’{http://codespeak.net/lxml/objectify/pytype}pytype’

450

Class BoolElement Module lxml.objectify

Class BoolElement

object

lxml.etree._Element

lxml.etree.ElementBase

lxml.objectify.ObjectifiedElement

lxml.objectify.ObjectifiedDataElement

lxml.objectify.NumberElement

lxml.objectify.IntElement

lxml.objectify.BoolElement

Boolean type base on string values: ’true’ or ’false’.

Note that this inherits from IntElement to mimic the behaviour of Python’s bool type.

Methods

__eq__(x, y)

x==y Overrides: lxml.objectify.NumberElement.__eq__

__ge__(x, y)

x>=y Overrides: lxml.objectify.NumberElement.__ge__

__gt__(x, y)

x>y Overrides: lxml.objectify.NumberElement.__gt__

__hash__(x)

hash(x) Overrides: object.__hash__

451

Class BoolElement Module lxml.objectify

__le__(x, y)

x<=y Overrides: lxml.objectify.NumberElement.__le__

__lt__(x, y)

x<y Overrides: lxml.objectify.NumberElement.__lt__

__ne__(x, y)

x!=y Overrides: lxml.objectify.NumberElement.__ne__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

__nonzero__(x)

x != 0 Overrides: lxml.etree._Element.__nonzero__

__repr__(x)

repr(x) Overrides: object.__repr__

__str__(x)

str(x) Overrides: object.__str__

Inherited from lxml.objectify.NumberElement(Section B)

__abs__(), __add__(), __and__(), __complex__(), __div__(), __float__(), __hex__(),
__int__(), __invert__(), __long__(), __lshift__(), __mod__(), __mul__(), __neg__(),
__oct__(), __or__(), __pos__(), __pow__(), __radd__(), __rand__(), __rdiv__(),
__rlshift__(), __rmod__(), __rmul__(), __ror__(), __rpow__(), __rrshift__(), __rshift__(),
__rsub__(), __rtruediv__(), __rxor__(), __sub__(), __truediv__(), __xor__()

Inherited from lxml.objectify.ObjectifiedElement(Section B)

__delattr__(), __delitem__(), __getattr__(), __getattribute__(), __getitem__(), __iter__(),

452

Class ElementMaker Module lxml.objectify

__len__(), __reduce__(), __setattr__(), __setitem__(), addattr(), countchildren(), de-
scendantpaths(), getchildren()

Inherited from lxml.etree.ElementBase(Section B)

__init__()

Inherited from lxml.etree._Element

__contains__(), __copy__(), __deepcopy__(), __reversed__(), addnext(), addpre-
vious(), append(), clear(), extend(), find(), findall(), findtext(), get(), getiterator(),
getnext(), getparent(), getprevious(), getroottree(), index(), insert(), items(), iter(),
iterancestors(), iterchildren(), iterdescendants(), iterfind(), itersiblings(), itertext(),
keys(), makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
pyval
Inherited from lxml.objectify.ObjectifiedElement (Section B)
text
Inherited from lxml.etree._Element
attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object
__class__

Class ElementMaker

object

lxml.objectify.ElementMaker

ElementMaker(self, namespace=None, nsmap=None, annotate=True, makeelement=None)

An ElementMaker that can be used for constructing trees.

Example:

>>> M = ElementMaker(annotate=False)
>>> attributes = {’class’: ’par’}
>>> html = M.html(M.body(M.p(’hello’, attributes, M.br, ’objectify’, style="font-weight: bold")))

>>> from lxml.etree import tostring
>>> print(tostring(html, method=’html’).decode(’ascii’))
<html><body><p style="font-weight: bold" class="par">hello
objectify</p></body></html>

453

Class ElementMaker Module lxml.objectify

To create tags that are not valid Python identifiers, call the factory directly and pass the tag
name as first argument:

>>> root = M(’tricky-tag’, ’some text’)
>>> print(root.tag)
tricky-tag
>>> print(root.text)
some text

Note that this module has a predefined ElementMaker instance called E.

Methods

__call__(x, ...)

x(...)

__getattr__(...)

__getattribute__(...)

x.__getattribute__(’name’) <==> x.name Overrides: object.__getattribute__

__init__(self, namespace=None, nsmap=None, annotate=True,
makeelement=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from object

__delattr__(), __format__(), __hash__(), __reduce__(), __reduce_ex__(), __repr__(),
__setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

454

Class FloatElement Module lxml.objectify

Name Description
Inherited from object
__class__

Class FloatElement

object

lxml.etree._Element

lxml.etree.ElementBase

lxml.objectify.ObjectifiedElement

lxml.objectify.ObjectifiedDataElement

lxml.objectify.NumberElement

lxml.objectify.FloatElement

Methods

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.objectify.NumberElement(Section B)

__abs__(), __add__(), __and__(), __complex__(), __div__(), __eq__(), __float__(),
__ge__(), __gt__(), __hash__(), __hex__(), __int__(), __invert__(), __le__(), __long__(),
__lshift__(), __lt__(), __mod__(), __mul__(), __ne__(), __neg__(), __nonzero__(),
__oct__(), __or__(), __pos__(), __pow__(), __radd__(), __rand__(), __rdiv__(),
__repr__(), __rlshift__(), __rmod__(), __rmul__(), __ror__(), __rpow__(), __rrshift__(),
__rshift__(), __rsub__(), __rtruediv__(), __rxor__(), __str__(), __sub__(), __true-
div__(), __xor__()

Inherited from lxml.objectify.ObjectifiedElement(Section B)

__delattr__(), __delitem__(), __getattr__(), __getattribute__(), __getitem__(), __iter__(),
__len__(), __reduce__(), __setattr__(), __setitem__(), addattr(), countchildren(), de-
scendantpaths(), getchildren()

Inherited from lxml.etree.ElementBase(Section B)

__init__()

455

Class IntElement Module lxml.objectify

Inherited from lxml.etree._Element

__contains__(), __copy__(), __deepcopy__(), __reversed__(), addnext(), addpre-
vious(), append(), clear(), extend(), find(), findall(), findtext(), get(), getiterator(),
getnext(), getparent(), getprevious(), getroottree(), index(), insert(), items(), iter(),
iterancestors(), iterchildren(), iterdescendants(), iterfind(), itersiblings(), itertext(),
keys(), makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.objectify.NumberElement (Section B)
pyval
Inherited from lxml.objectify.ObjectifiedElement (Section B)
text
Inherited from lxml.etree._Element
attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object
__class__

Class IntElement

object

lxml.etree._Element

lxml.etree.ElementBase

lxml.objectify.ObjectifiedElement

lxml.objectify.ObjectifiedDataElement

lxml.objectify.NumberElement

lxml.objectify.IntElement

Known Subclasses: lxml.objectify.BoolElement

456

Class IntElement Module lxml.objectify

Methods

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.objectify.NumberElement(Section B)

__abs__(), __add__(), __and__(), __complex__(), __div__(), __eq__(), __float__(),
__ge__(), __gt__(), __hash__(), __hex__(), __int__(), __invert__(), __le__(), __long__(),
__lshift__(), __lt__(), __mod__(), __mul__(), __ne__(), __neg__(), __nonzero__(),
__oct__(), __or__(), __pos__(), __pow__(), __radd__(), __rand__(), __rdiv__(),
__repr__(), __rlshift__(), __rmod__(), __rmul__(), __ror__(), __rpow__(), __rrshift__(),
__rshift__(), __rsub__(), __rtruediv__(), __rxor__(), __str__(), __sub__(), __true-
div__(), __xor__()

Inherited from lxml.objectify.ObjectifiedElement(Section B)

__delattr__(), __delitem__(), __getattr__(), __getattribute__(), __getitem__(), __iter__(),
__len__(), __reduce__(), __setattr__(), __setitem__(), addattr(), countchildren(), de-
scendantpaths(), getchildren()

Inherited from lxml.etree.ElementBase(Section B)

__init__()

Inherited from lxml.etree._Element

__contains__(), __copy__(), __deepcopy__(), __reversed__(), addnext(), addpre-
vious(), append(), clear(), extend(), find(), findall(), findtext(), get(), getiterator(),
getnext(), getparent(), getprevious(), getroottree(), index(), insert(), items(), iter(),
iterancestors(), iterchildren(), iterdescendants(), iterfind(), itersiblings(), itertext(),
keys(), makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.objectify.NumberElement (Section B)
pyval
Inherited from lxml.objectify.ObjectifiedElement (Section B)
text
Inherited from lxml.etree._Element
attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object

continued on next page

457

Class LongElement Module lxml.objectify

Name Description
__class__

Class LongElement

object

lxml.etree._Element

lxml.etree.ElementBase

lxml.objectify.ObjectifiedElement

lxml.objectify.ObjectifiedDataElement

lxml.objectify.NumberElement

lxml.objectify.LongElement

Methods

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from lxml.objectify.NumberElement(Section B)

__abs__(), __add__(), __and__(), __complex__(), __div__(), __eq__(), __float__(),
__ge__(), __gt__(), __hash__(), __hex__(), __int__(), __invert__(), __le__(), __long__(),
__lshift__(), __lt__(), __mod__(), __mul__(), __ne__(), __neg__(), __nonzero__(),
__oct__(), __or__(), __pos__(), __pow__(), __radd__(), __rand__(), __rdiv__(),
__repr__(), __rlshift__(), __rmod__(), __rmul__(), __ror__(), __rpow__(), __rrshift__(),
__rshift__(), __rsub__(), __rtruediv__(), __rxor__(), __str__(), __sub__(), __true-
div__(), __xor__()

Inherited from lxml.objectify.ObjectifiedElement(Section B)

__delattr__(), __delitem__(), __getattr__(), __getattribute__(), __getitem__(), __iter__(),
__len__(), __reduce__(), __setattr__(), __setitem__(), addattr(), countchildren(), de-
scendantpaths(), getchildren()

Inherited from lxml.etree.ElementBase(Section B)

__init__()

Inherited from lxml.etree._Element

458

Class NoneElement Module lxml.objectify

__contains__(), __copy__(), __deepcopy__(), __reversed__(), addnext(), addpre-
vious(), append(), clear(), extend(), find(), findall(), findtext(), get(), getiterator(),
getnext(), getparent(), getprevious(), getroottree(), index(), insert(), items(), iter(),
iterancestors(), iterchildren(), iterdescendants(), iterfind(), itersiblings(), itertext(),
keys(), makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from lxml.objectify.NumberElement (Section B)
pyval
Inherited from lxml.objectify.ObjectifiedElement (Section B)
text
Inherited from lxml.etree._Element
attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object
__class__

Class NoneElement

object

lxml.etree._Element

lxml.etree.ElementBase

lxml.objectify.ObjectifiedElement

lxml.objectify.ObjectifiedDataElement

lxml.objectify.NoneElement

Methods

__eq__(x, y)

x==y

459

Class NoneElement Module lxml.objectify

__ge__(x, y)

x>=y

__gt__(x, y)

x>y

__hash__(x)

hash(x) Overrides: object.__hash__

__le__(x, y)

x<=y

__lt__(x, y)

x<y

__ne__(x, y)

x!=y

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

__nonzero__(x)

x != 0 Overrides: lxml.etree._Element.__nonzero__

__repr__(x)

repr(x) Overrides: object.__repr__

460

Class NoneElement Module lxml.objectify

__str__(x)

str(x) Overrides: object.__str__

Inherited from lxml.objectify.ObjectifiedElement(Section B)

__delattr__(), __delitem__(), __getattr__(), __getattribute__(), __getitem__(), __iter__(),
__len__(), __reduce__(), __setattr__(), __setitem__(), addattr(), countchildren(), de-
scendantpaths(), getchildren()

Inherited from lxml.etree.ElementBase(Section B)

__init__()

Inherited from lxml.etree._Element

__contains__(), __copy__(), __deepcopy__(), __reversed__(), addnext(), addpre-
vious(), append(), clear(), extend(), find(), findall(), findtext(), get(), getiterator(),
getnext(), getparent(), getprevious(), getroottree(), index(), insert(), items(), iter(),
iterancestors(), iterchildren(), iterdescendants(), iterfind(), itersiblings(), itertext(),
keys(), makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
pyval
Inherited from lxml.objectify.ObjectifiedElement (Section B)
text
Inherited from lxml.etree._Element
attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object
__class__

461

Class NumberElement Module lxml.objectify

Class NumberElement

object

lxml.etree._Element

lxml.etree.ElementBase

lxml.objectify.ObjectifiedElement

lxml.objectify.ObjectifiedDataElement

lxml.objectify.NumberElement

Known Subclasses: lxml.objectify.IntElement, lxml.objectify.FloatElement, lxml.objectify.LongElement

Methods

__abs__(x)

abs(x)

__add__(x, y)

x+y

__and__(x, y)

x&y

__complex__(...)

__div__(x, y)

x/y

__eq__(x, y)

x==y

462

Class NumberElement Module lxml.objectify

__float__(x)

float(x)

__ge__(x, y)

x>=y

__gt__(x, y)

x>y

__hash__(x)

hash(x) Overrides: object.__hash__

__hex__(x)

hex(x)

__int__(x)

int(x)

__invert__(x)

~x

__le__(x, y)

x<=y

__long__(x)

long(x)

463

Class NumberElement Module lxml.objectify

__lshift__(x, y)

x«y

__lt__(x, y)

x<y

__mod__(x, y)

x%y

__mul__(x, y)

x*y

__ne__(x, y)

x!=y

__neg__(x)

-x

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

__nonzero__(x)

x != 0 Overrides: lxml.etree._Element.__nonzero__

__oct__(x)

oct(x)

464

Class NumberElement Module lxml.objectify

__or__(x, y)

x|y

__pos__(x)

+x

__pow__(x, y, z=...)

pow(x, y[, z])

__radd__(x, y)

y+x

__rand__(x, y)

y&x

__rdiv__(x, y)

y/x

__repr__(x)

repr(x) Overrides: object.__repr__

__rlshift__(x, y)

y«x

__rmod__(x, y)

y%x

465

Class NumberElement Module lxml.objectify

__rmul__(x, y)

y*x

__ror__(x, y)

y|x

__rpow__(y, x, z=...)

pow(x, y[, z])

__rrshift__(x, y)

y»x

__rshift__(x, y)

x»y

__rsub__(x, y)

y-x

__rtruediv__(x, y)

y/x

__rxor__(x, y)

y^x

__str__(x)

str(x) Overrides: object.__str__

466

Class NumberElement Module lxml.objectify

__sub__(x, y)

x-y

__truediv__(x, y)

x/y

__xor__(x, y)

x^y

Inherited from lxml.objectify.ObjectifiedElement(Section B)

__delattr__(), __delitem__(), __getattr__(), __getattribute__(), __getitem__(), __iter__(),
__len__(), __reduce__(), __setattr__(), __setitem__(), addattr(), countchildren(), de-
scendantpaths(), getchildren()

Inherited from lxml.etree.ElementBase(Section B)

__init__()

Inherited from lxml.etree._Element

__contains__(), __copy__(), __deepcopy__(), __reversed__(), addnext(), addpre-
vious(), append(), clear(), extend(), find(), findall(), findtext(), get(), getiterator(),
getnext(), getparent(), getprevious(), getroottree(), index(), insert(), items(), iter(),
iterancestors(), iterchildren(), iterdescendants(), iterfind(), itersiblings(), itertext(),
keys(), makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
pyval
Inherited from lxml.objectify.ObjectifiedElement (Section B)
text
Inherited from lxml.etree._Element
attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object
__class__

467

Class ObjectPath Module lxml.objectify

Class ObjectPath

object

lxml.objectify.ObjectPath

ObjectPath(path) Immutable object that represents a compiled object path.

Example for a path: ’root.child[1].{other}child[25]’

Methods

__call__(...)

Follow the attribute path in the object structure and return the target attribute
value.

If it it not found, either returns a default value (if one was passed as second
argument) or raises AttributeError.

__init__(path)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

__str__(x)

str(x) Overrides: object.__str__

addattr(self, root, value)

Append a value to the target element in a subtree.

If any of the children on the path does not exist, it is created.

hasattr(self, root)

468

Class ObjectifiedDataElement Module lxml.objectify

setattr(self, root, value)

Set the value of the target element in a subtree.

If any of the children on the path does not exist, it is created.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __subclasshook__()

Properties

Name Description
find
Inherited from object
__class__

Class ObjectifiedDataElement

object

lxml.etree._Element

lxml.etree.ElementBase

lxml.objectify.ObjectifiedElement

lxml.objectify.ObjectifiedDataElement

Known Subclasses: lxml.objectify.NumberElement, lxml.objectify.NoneElement, lxml.objectify.StringElement

This is the base class for all data type Elements. Subclasses should override the ’pyval’ property
and possibly the __str__ method.

Methods

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

469

Class ObjectifiedDataElement Module lxml.objectify

__repr__(x)

repr(x) Overrides: object.__repr__

__str__(x)

str(x) Overrides: object.__str__

Inherited from lxml.objectify.ObjectifiedElement(Section B)

__delattr__(), __delitem__(), __getattr__(), __getattribute__(), __getitem__(), __iter__(),
__len__(), __reduce__(), __setattr__(), __setitem__(), addattr(), countchildren(), de-
scendantpaths(), getchildren()

Inherited from lxml.etree.ElementBase(Section B)

__init__()

Inherited from lxml.etree._Element

__contains__(), __copy__(), __deepcopy__(), __nonzero__(), __reversed__(), addnext(),
addprevious(), append(), clear(), extend(), find(), findall(), findtext(), get(), getiter-
ator(), getnext(), getparent(), getprevious(), getroottree(), index(), insert(), items(),
iter(), iterancestors(), iterchildren(), iterdescendants(), iterfind(), itersiblings(), iter-
text(), keys(), makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
pyval
Inherited from lxml.objectify.ObjectifiedElement (Section B)
text
Inherited from lxml.etree._Element
attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object
__class__

470

Class ObjectifiedElement Module lxml.objectify

Class ObjectifiedElement

object

lxml.etree._Element

lxml.etree.ElementBase

lxml.objectify.ObjectifiedElement

Known Subclasses: lxml.objectify.ObjectifiedDataElement

Main XML Element class.

Element children are accessed as object attributes. Multiple children with the same name are
available through a list index. Example:

>>> root = XML("<root><c1><c2>0</c2><c2>1</c2></c1></root>")
>>> second_c2 = root.c1.c2[1]
>>> print(second_c2.text)
1

Note that you cannot (and must not) instantiate this class or its subclasses.

Methods

__delattr__(...)

x.__delattr__(’name’) <==> del x.name Overrides: object.__delattr__

__delitem__(x, y)

del x[y] Overrides: lxml.etree._Element.__delitem__

__getattr__(...)

Return the (first) child with the given tag name. If no namespace is provided, the
child will be looked up in the same one as self.

__getattribute__(...)

x.__getattribute__(’name’) <==> x.name Overrides: object.__getattribute__

471

Class ObjectifiedElement Module lxml.objectify

__getitem__(...)

Return a sibling, counting from the first child of the parent. The method behaves
like both a dict and a sequence.

∙ If argument is an integer, returns the sibling at that position.

∙ If argument is a string, does the same as getattr(). This can be used to
provide namespaces for element lookup, or to look up children with special
names (text etc.).

∙ If argument is a slice object, returns the matching slice.

Overrides: lxml.etree._Element.__getitem__

__iter__(...)

Iterate over self and all siblings with the same tag. Overrides:
lxml.etree._Element.__iter__

__len__(...)

Count self and siblings with the same tag. Overrides:
lxml.etree._Element.__len__

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

__reduce__(...)

helper for pickle Overrides: object.__reduce__ extit(inherited documentation)

__setattr__(...)

Set the value of the (first) child with the given tag name. If no namespace is
provided, the child will be looked up in the same one as self. Overrides:
object.__setattr__

472

Class ObjectifiedElement Module lxml.objectify

__setitem__(...)

Set the value of a sibling, counting from the first child of the parent. Implements
key assignment, item assignment and slice assignment.

∙ If argument is an integer, sets the sibling at that position.

∙ If argument is a string, does the same as setattr(). This is used to provide
namespaces for element lookup.

∙ If argument is a sequence (list, tuple, etc.), assign the contained items to the
siblings.

Overrides: lxml.etree._Element.__setitem__

__str__(x)

str(x) Overrides: object.__str__

addattr(self, tag, value)

Add a child value to the element.

As opposed to append(), it sets a data value, not an element.

countchildren(self)

Return the number of children of this element, regardless of their name.

descendantpaths(self, prefix=None)

Returns a list of object path expressions for all descendants.

getchildren(self)

Returns a sequence of all direct children. The elements are returned in document
order. Overrides: lxml.etree._Element.getchildren

Inherited from lxml.etree.ElementBase(Section B)

__init__()

473

Class ObjectifyElementClassLookup Module lxml.objectify

Inherited from lxml.etree._Element

__contains__(), __copy__(), __deepcopy__(), __nonzero__(), __repr__(), __reversed__(),
addnext(), addprevious(), append(), clear(), extend(), find(), findall(), findtext(), get(),
getiterator(), getnext(), getparent(), getprevious(), getroottree(), index(), insert(), items(),
iter(), iterancestors(), iterchildren(), iterdescendants(), iterfind(), itersiblings(), iter-
text(), keys(), makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
text Text before the first subelement. This is either a

string or the value None, if there was no text.
Inherited from lxml.etree._Element
attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object
__class__

Class ObjectifyElementClassLookup

object

lxml.etree.ElementClassLookup

lxml.objectify.ObjectifyElementClassLookup

ObjectifyElementClassLookup(self, tree_class=None, empty_data_class=None) Element class
lookup method that uses the objectify classes.

Methods

__init__(self, tree_class=None, empty_data_class=None)

Lookup mechanism for objectify.

The default Element classes can be replaced by passing subclasses of
ObjectifiedElement and ObjectifiedDataElement as keyword arguments.
’tree_class’ defines inner tree classes (defaults to ObjectifiedElement),
’empty_data_class’ defines the default class for empty data elements (defauls to
StringElement). Overrides: object.__init__

474

Class PyType Module lxml.objectify

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
Inherited from object
__class__

Class PyType

object

lxml.objectify.PyType

PyType(self, name, type_check, type_class, stringify=None) User defined type.

Named type that contains a type check function and a type class that inherits from Objectified-
DataElement. The type check must take a string as argument and raise ValueError or TypeError
if it cannot handle the string value. It may be None in which case it is not considered for type
guessing.

Example:

PyType(’int’, int, MyIntClass).register()

Note that the order in which types are registered matters. The first matching type will be used.

Methods

__init__(self, name, type_check, type_class, stringify=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

475

Class PyType Module lxml.objectify

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

__repr__(x)

repr(x) Overrides: object.__repr__

register(self, before=None, after=None)

Register the type.

The additional keyword arguments ’before’ and ’after’ accept a sequence of type
names that must appear before/after the new type in the type list. If any of them
is not currently known, it is simply ignored. Raises ValueError if the
dependencies cannot be fulfilled.

unregister(self)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties

Name Description
name
stringify
type_check
xmlSchemaTypes The list of XML Schema datatypes this Python

type maps to.
Note that this must be set before registering the
type!

Inherited from object
__class__

476

Class StringElement Module lxml.objectify

Class StringElement

object

lxml.etree._Element

lxml.etree.ElementBase

lxml.objectify.ObjectifiedElement

lxml.objectify.ObjectifiedDataElement

lxml.objectify.StringElement

String data class.

Note that this class does not support the sequence protocol of strings: len(), iter(), str_attr[0],
str_attr[0:1], etc. are not supported. Instead, use the .text attribute to get a ’real’ string.

Methods

__add__(x, y)

x+y

__complex__(...)

__eq__(x, y)

x==y

__float__(x)

float(x)

__ge__(x, y)

x>=y

477

Class StringElement Module lxml.objectify

__gt__(x, y)

x>y

__hash__(x)

hash(x) Overrides: object.__hash__

__int__(x)

int(x)

__le__(x, y)

x<=y

__long__(x)

long(x)

__lt__(x, y)

x<y

__mod__(x, y)

x%y

__mul__(x, y)

x*y

__ne__(x, y)

x!=y

478

Class StringElement Module lxml.objectify

__new__(T, S, ...)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__

__nonzero__(x)

x != 0 Overrides: lxml.etree._Element.__nonzero__

__radd__(x, y)

y+x

__repr__(x)

repr(x) Overrides: object.__repr__

__rmod__(x, y)

y%x

__rmul__(x, y)

y*x

strlen(...)

Inherited from lxml.objectify.ObjectifiedDataElement(Section B)

__str__()

Inherited from lxml.objectify.ObjectifiedElement(Section B)

__delattr__(), __delitem__(), __getattr__(), __getattribute__(), __getitem__(), __iter__(),
__len__(), __reduce__(), __setattr__(), __setitem__(), addattr(), countchildren(), de-
scendantpaths(), getchildren()

Inherited from lxml.etree.ElementBase(Section B)

__init__()

Inherited from lxml.etree._Element

479

Class StringElement Module lxml.objectify

__contains__(), __copy__(), __deepcopy__(), __reversed__(), addnext(), addpre-
vious(), append(), clear(), extend(), find(), findall(), findtext(), get(), getiterator(),
getnext(), getparent(), getprevious(), getroottree(), index(), insert(), items(), iter(),
iterancestors(), iterchildren(), iterdescendants(), iterfind(), itersiblings(), itertext(),
keys(), makeelement(), remove(), replace(), set(), values(), xpath()

Inherited from object

__format__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
pyval
Inherited from lxml.objectify.ObjectifiedElement (Section B)
text
Inherited from lxml.etree._Element
attrib, base, nsmap, prefix, sourceline, tag, tail
Inherited from object
__class__

480

Variables Module lxml.pyclasslookup

Module lxml.pyclasslookup

Variables

Name Description
__package__ Value: ’lxml’

481

Class SaxError Module lxml.sax

Module lxml.sax

SAX-based adapter to copy trees from/to the Python standard library.

Use the ElementTreeContentHandler class to build an ElementTree from SAX events.

Use the ElementTreeProducer class or the saxify() function to fire the SAX events
of an ElementTree against a SAX ContentHandler.

See http://codespeak.net/lxml/sax.html

Functions

saxify(element_or_tree, content_handler)

One-shot helper to generate SAX events from an XML tree and fire them against
a SAX ContentHandler.

Variables

Name Description
__package__ Value: ’lxml’

Class SaxError

object

exceptions.BaseException

exceptions.Exception

lxml.etree.Error

lxml.etree.LxmlError

lxml.sax.SaxError

General SAX error.

Methods

Inherited from lxml.etree.LxmlError(Section B)

__init__()

482

http://codespeak.net/lxml/sax.html

Class ElementTreeContentHandler Module lxml.sax

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __reduce__(), __repr__(),
__setattr__(), __setstate__(), __str__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

Class Variables

Name Description
Inherited from lxml.etree.LxmlError (Section B)
__qualname__

Class ElementTreeContentHandler

xml.sax.handler.ContentHandler

lxml.sax.ElementTreeContentHandler

Build an lxml ElementTree from SAX events.

Methods

__init__(self, makeelement=None)

Overrides: xml.sax.handler.ContentHandler.__init__

483

Class ElementTreeContentHandler Module lxml.sax

setDocumentLocator(self, locator)

Called by the parser to give the application a locator for locating the origin of
document events.

SAX parsers are strongly encouraged (though not absolutely required) to supply
a locator: if it does so, it must supply the locator to the application by invoking
this method before invoking any of the other methods in the DocumentHandler
interface.

The locator allows the application to determine the end position of any
document-related event, even if the parser is not reporting an error. Typically, the
application will use this information for reporting its own errors (such as
character content that does not match an application’s business rules). The
information returned by the locator is probably not sufficient for use with a
search engine.

Note that the locator will return correct information only during the invocation of
the events in this interface. The application should not attempt to use it at any
other time. Overrides: xml.sax.handler.ContentHandler.setDocumentLocator
extit(inherited documentation)

startDocument(self)

Receive notification of the beginning of a document.

The SAX parser will invoke this method only once, before any other methods in
this interface or in DTDHandler (except for setDocumentLocator). Overrides:
xml.sax.handler.ContentHandler.startDocument extit(inherited documentation)

endDocument(self)

Receive notification of the end of a document.

The SAX parser will invoke this method only once, and it will be the last method
invoked during the parse. The parser shall not invoke this method until it has
either abandoned parsing (because of an unrecoverable error) or reached the end
of input. Overrides: xml.sax.handler.ContentHandler.endDocument
extit(inherited documentation)

484

Class ElementTreeContentHandler Module lxml.sax

startPrefixMapping(self, prefix, uri)

Begin the scope of a prefix-URI Namespace mapping.

The information from this event is not necessary for normal Namespace
processing: the SAX XML reader will automatically replace prefixes for element
and attribute names when the
http://xml.org/sax/features/namespaces feature is true (the
default).

There are cases, however, when applications need to use prefixes in character
data or in attribute values, where they cannot safely be expanded automatically;
the start/endPrefixMapping event supplies the information to the application to
expand prefixes in those contexts itself, if necessary.

Note that start/endPrefixMapping events are not guaranteed to be properly nested
relative to each-other: all startPrefixMapping events will occur before the
corresponding startElement event, and all endPrefixMapping events will occur
after the corresponding endElement event, but their order is not guaranteed.
Overrides: xml.sax.handler.ContentHandler.startPrefixMapping extit(inherited
documentation)

endPrefixMapping(self, prefix)

End the scope of a prefix-URI mapping.

See startPrefixMapping for details. This event will always occur after the
corresponding endElement event, but the order of endPrefixMapping events is
not otherwise guaranteed. Overrides:
xml.sax.handler.ContentHandler.endPrefixMapping extit(inherited
documentation)

startElementNS(self, ns_name, qname, attributes=None)

Signals the start of an element in namespace mode.

The name parameter contains the name of the element type as a (uri, localname)
tuple, the qname parameter the raw XML 1.0 name used in the source document,
and the attrs parameter holds an instance of the Attributes class containing the
attributes of the element.

The uri part of the name tuple is None for elements which have no namespace.
Overrides: xml.sax.handler.ContentHandler.startElementNS extit(inherited
documentation)

485

http://xml.org/sax/features/namespaces

Class ElementTreeContentHandler Module lxml.sax

processingInstruction(self, target, data)

Receive notification of a processing instruction.

The Parser will invoke this method once for each processing instruction found:
note that processing instructions may occur before or after the main document
element.

A SAX parser should never report an XML declaration (XML 1.0, section 2.8)
or a text declaration (XML 1.0, section 4.3.1) using this method. Overrides:
xml.sax.handler.ContentHandler.processingInstruction extit(inherited
documentation)

endElementNS(self, ns_name, qname)

Signals the end of an element in namespace mode.

The name parameter contains the name of the element type, just as with the
startElementNS event. Overrides:
xml.sax.handler.ContentHandler.endElementNS extit(inherited documentation)

startElement(self, name, attributes=None)

Signals the start of an element in non-namespace mode.

The name parameter contains the raw XML 1.0 name of the element type as a
string and the attrs parameter holds an instance of the Attributes class containing
the attributes of the element. Overrides:
xml.sax.handler.ContentHandler.startElement extit(inherited documentation)

endElement(self, name)

Signals the end of an element in non-namespace mode.

The name parameter contains the name of the element type, just as with the
startElement event. Overrides: xml.sax.handler.ContentHandler.endElement
extit(inherited documentation)

characters(self, data)

Receive notification of character data.

The Parser will call this method to report each chunk of character data. SAX
parsers may return all contiguous character data in a single chunk, or they may
split it into several chunks; however, all of the characters in any single event
must come from the same external entity so that the Locator provides useful
information. Overrides: xml.sax.handler.ContentHandler.characters
extit(inherited documentation)

486

Class ElementTreeProducer Module lxml.sax

ignorableWhitespace(self, data)

Receive notification of character data.

The Parser will call this method to report each chunk of character data. SAX
parsers may return all contiguous character data in a single chunk, or they may
split it into several chunks; however, all of the characters in any single event
must come from the same external entity so that the Locator provides useful
information. Overrides: xml.sax.handler.ContentHandler.ignorableWhitespace
extit(inherited documentation)

Inherited from xml.sax.handler.ContentHandler

skippedEntity()

Properties

Name Description
etree Contains the generated ElementTree after

parsing is finished.

Class ElementTreeProducer

object

lxml.sax.ElementTreeProducer

Produces SAX events for an element and children.

Methods

__init__(self, element_or_tree, content_handler)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

saxify(self)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __str__(), __subclasshook__()

Properties
continued on next page

487

Class ElementTreeProducer Module lxml.sax

Name Description

Name Description
Inherited from object
__class__

488

Module lxml.usedoctest

Module lxml.usedoctest

Doctest module for XML comparison.

Usage:

>>> import lxml.usedoctest
>>> # now do your XML doctests ...

See lxml.doctestcompare

489

	Contents
	I lxml
	lxml
	Introduction
	Documentation
	Download
	Mailing list
	Bug tracker
	License
	Old Versions

	Why lxml?
	Contents
	Motto
	Aims

	Installing lxml
	Contents
	Requirements
	Installation
	Building lxml from sources
	Using lxml with python-libxml2
	MS Windows
	MacOS-X

	Benchmarks and Speed
	Contents
	General notes
	How to read the timings
	Parsing and Serialising
	The ElementTree API
	Child access
	Element creation
	Merging different sources
	deepcopy
	Tree traversal

	XPath
	A longer example
	lxml.objectify
	ObjectPath
	Caching Elements
	Further optimisations

	ElementTree compatibility of lxml.etree
	lxml FAQ - Frequently Asked Questions
	Contents
	General Questions
	Is there a tutorial?
	Where can I find more documentation about lxml?
	What standards does lxml implement?
	Who uses lxml?
	What is the difference between lxml.etree and lxml.objectify?
	How can I make my application run faster?
	What about that trailing text on serialised Elements?
	How can I find out if an Element is a comment or PI?
	How can I map an XML tree into a dict of dicts?
	Why does lxml sometimes return 'str' values for text in Python 2?

	Installation
	Which version of libxml2 and libxslt should I use or require?
	Where are the binary builds?
	Why do I get errors about missing UCS4 symbols when installing lxml?

	Contributing
	Why is lxml not written in Python?
	How can I contribute?

	Bugs
	My application crashes!
	My application crashes on MacOS-X!
	I think I have found a bug in lxml. What should I do?
	How do I know a bug is really in lxml and not in libxml2?

	Threading
	Can I use threads to concurrently access the lxml API?
	Does my program run faster if I use threads?
	Would my single-threaded program run faster if I turned off threading?
	Why can't I reuse XSLT stylesheets in other threads?
	My program crashes when run with mod_python/Pyro/Zope/Plone/...

	Parsing and Serialisation
	Why doesn't the pretty_print option reformat my XML output?
	Why can't lxml parse my XML from unicode strings?
	Can lxml parse from file objects opened in unicode/text mode?
	What is the difference between str(xslt(doc)) and xslt(doc).write() ?
	Why can't I just delete parents or clear the root node in iterparse()?
	How do I output null characters in XML text?
	Is lxml vulnerable to XML bombs?
	How do I use lxml safely as a web-service endpoint?

	XPath and Document Traversal
	What are the findall() and xpath() methods on Element(Tree)?
	Why doesn't findall() support full XPath expressions?
	How can I find out which namespace prefixes are used in a document?
	How can I specify a default namespace for XPath expressions?

	II Developing with lxml
	The lxml.etree Tutorial
	Contents
	The Element class
	Elements are lists
	Elements carry attributes as a dict
	Elements contain text
	Using XPath to find text
	Tree iteration
	Serialisation

	The ElementTree class
	Parsing from strings and files
	The fromstring() function
	The XML() function
	The parse() function
	Parser objects
	Incremental parsing
	Event-driven parsing

	Namespaces
	The E-factory
	ElementPath

	APIs specific to lxml.etree
	Contents
	lxml.etree
	Other Element APIs
	Trees and Documents
	Iteration
	Error handling on exceptions
	Error logging
	Serialisation
	Incremental XML generation
	CDATA
	XInclude and ElementInclude
	write_c14n on ElementTree

	Parsing XML and HTML with lxml
	Contents
	Parsers
	Parser options
	Error log
	Parsing HTML
	Doctype information

	The target parser interface
	The feed parser interface
	Incremental event parsing
	Event types
	Modifying the tree
	Selective tag events
	Comments and PIs
	Events with custom targets

	iterparse and iterwalk
	iterwalk

	Python unicode strings
	Serialising to Unicode strings

	Validation with lxml
	Contents
	Validation at parse time
	DTD
	RelaxNG
	XMLSchema
	Schematron
	(Pre-ISO-Schematron)

	XPath and XSLT with lxml
	Contents
	XPath
	The xpath() method
	Namespaces and prefixes
	XPath return values
	Generating XPath expressions
	The XPath class
	Regular expressions in XPath
	The XPathEvaluator classes
	ETXPath
	Error handling

	XSLT
	XSLT result objects
	Stylesheet parameters
	Errors and messages
	The xslt() tree method
	Dealing with stylesheet complexity
	Profiling

	lxml.objectify
	Contents
	The lxml.objectify API
	Element access through object attributes
	Creating objectify trees
	Tree generation with the E-factory
	Namespace handling

	Asserting a Schema
	ObjectPath
	Python data types
	Recursive tree dump
	Recursive string representation of elements

	How data types are matched
	Type annotations
	XML Schema datatype annotation
	The DataElement factory
	Defining additional data classes
	Advanced element class lookup

	What is different from lxml.etree?

	lxml.html
	Contents
	Parsing HTML
	Parsing HTML fragments
	Really broken pages

	HTML Element Methods
	Running HTML doctests
	Creating HTML with the E-factory
	Viewing your HTML

	Working with links
	Functions

	Forms
	Form Filling Example
	Form Submission

	Cleaning up HTML
	autolink
	wordwrap

	HTML Diff
	Examples
	Microformat Example

	lxml.cssselect
	Contents
	The CSSSelector class
	The cssselect method
	Supported Selectors
	Namespaces

	BeautifulSoup Parser
	Contents
	Parsing with the soupparser
	Entity handling
	Using soupparser as a fallback
	Using only the encoding detection

	html5lib Parser
	Differences to regular HTML parsing
	Function Reference

	III Extending lxml
	Document loading and URL resolving
	Contents
	XML Catalogs
	URI Resolvers
	Document loading in context
	I/O access control in XSLT

	Python extensions for XPath and XSLT
	Contents
	XPath Extension functions
	The FunctionNamespace
	Global prefix assignment
	The XPath context
	Evaluators and XSLT
	Evaluator-local extensions
	What to return from a function

	XSLT extension elements
	Declaring extension elements
	Applying XSL templates
	Working with read-only elements

	Using custom Element classes in lxml
	Contents
	Background on Element proxies
	Element initialization
	Setting up a class lookup scheme
	Default class lookup
	Namespace class lookup
	Attribute based lookup
	Custom element class lookup
	Tree based element class lookup in Python

	Generating XML with custom classes
	Implementing namespaces

	Sax support
	Contents
	Building a tree from SAX events
	Producing SAX events from an ElementTree or Element
	Interfacing with pulldom/minidom

	The public C-API of lxml.etree
	Contents
	Writing external modules in Cython
	Writing external modules in C

	IV Developing lxml
	How to build lxml from source
	Contents
	Cython
	Github, git and hg
	Building the sources
	Running the tests and reporting errors
	Building an egg or wheel
	Building lxml on MacOS-X
	Static linking on Windows
	Building Debian packages from SVN sources

	How to read the source of lxml
	Contents
	What is Cython?
	Where to start?
	Concepts
	The documentation

	lxml.etree
	Python modules
	lxml.objectify
	lxml.html

	Credits
	Main contributors
	Special thanks goes to:

	Changes
	3.4.0 (2014-09-10)
	3.3.6 (2014-08-28)
	3.3.5 (2014-04-18)
	3.3.4 (2014-04-03)
	3.3.3 (2014-03-04)
	3.3.2 (2014-02-26)
	3.3.1 (2014-02-12)
	3.3.0 (2014-01-26)
	3.3.0beta5 (2014-01-18)
	3.3.0beta4 (2014-01-12)
	3.3.0beta3 (2014-01-02)
	3.3.0beta2 (2013-12-20)
	3.3.0beta1 (2013-12-12)
	3.2.5 (2014-01-02)
	3.2.4 (2013-11-07)
	3.2.3 (2013-07-28)
	3.2.2 (2013-07-28)
	3.2.1 (2013-05-11)
	3.2.0 (2013-04-28)
	3.1.2 (2013-04-12)
	3.1.1 (2013-03-29)
	3.1.0 (2013-02-10)
	3.1beta1 (2012-12-21)
	3.0.2 (2012-12-14)
	3.0.1 (2012-10-14)
	3.0 (2012-10-08)
	3.0beta1 (2012-09-26)
	3.0alpha2 (2012-08-23)
	3.0alpha1 (2012-07-31)
	2.3.6 (2012-09-28)
	2.3.5 (2012-07-31)
	2.3.4 (2012-03-26)
	2.3.3 (2012-01-04)
	2.3.2 (2011-11-11)
	2.3.1 (2011-09-25)
	2.3 (2011-02-06)
	2.3beta1 (2010-09-06)
	2.3alpha2 (2010-07-24)
	2.3alpha1 (2010-06-19)
	2.2.8 (2010-09-02)
	2.2.7 (2010-07-24)
	2.2.6 (2010-03-02)
	2.2.5 (2010-02-28)
	2.2.4 (2009-11-11)
	2.2.3 (2009-10-30)
	2.2.2 (2009-06-21)
	2.2.1 (2009-06-02)
	2.2 (2009-03-21)
	2.2beta4 (2009-02-27)
	2.2beta3 (2009-02-17)
	2.2beta2 (2009-01-25)
	2.1.5 (2009-01-06)
	2.2beta1 (2008-12-12)
	2.1.4 (2008-12-12)
	2.0.11 (2008-12-12)
	2.2alpha1 (2008-11-23)
	2.1.3 (2008-11-17)
	2.0.10 (2008-11-17)
	2.1.2 (2008-09-05)
	2.0.9 (2008-09-05)
	2.1.1 (2008-07-24)
	2.0.8 (2008-07-24)
	2.1 (2008-07-09)
	2.0.7 (2008-06-20)
	2.1beta3 (2008-06-19)
	2.0.6 (2008-05-31)
	2.1beta2 (2008-05-02)
	2.0.5 (2008-05-01)
	2.1beta1 (2008-04-15)
	2.0.4 (2008-04-13)
	2.1alpha1 (2008-03-27)
	2.0.3 (2008-03-26)
	2.0.2 (2008-02-22)
	2.0.1 (2008-02-13)
	2.0 (2008-02-01)
	1.3.6 (2007-10-29)
	1.3.5 (2007-10-22)
	1.3.4 (2007-08-30)
	1.3.3 (2007-07-26)
	1.3.2 (2007-07-03)
	1.3.1 (2007-07-02)
	1.3 (2007-06-24)
	1.2.1 (2007-02-27)
	1.2 (2007-02-20)
	1.1.2 (2006-10-30)
	1.1.1 (2006-09-21)
	1.1 (2006-09-13)
	1.0.4 (2006-09-09)
	1.0.3 (2006-08-08)
	1.0.2 (2006-06-27)
	1.0.1 (2006-06-09)
	1.0 (2006-06-01)
	0.9.2 (2006-05-10)
	0.9.1 (2006-03-30)
	0.9 (2006-03-20)
	0.8 (2005-11-03)
	0.7 (2005-06-15)
	0.6 (2005-05-14)
	0.5.1 (2005-04-09)
	0.5 (2005-04-08)

	Generated API documentation
	Package lxml
	Modules
	Functions
	Variables

	Module lxml.ElementInclude
	Functions
	Variables
	Class FatalIncludeError

	Module lxml.builder
	Functions
	Variables
	Class str
	Class str
	Class ElementMaker

	Module lxml.cssselect
	Class SelectorSyntaxError
	Class ExpressionError
	Class SelectorError
	Class CSSSelector

	Module lxml.doctestcompare
	Functions
	Variables
	Class LXMLOutputChecker
	Class LHTMLOutputChecker

	Module lxml.etree
	Functions
	Variables
	Class AttributeBasedElementClassLookup
	Class C14NError
	Class CDATA
	Class CommentBase
	Class CustomElementClassLookup
	Class DTD
	Class DTDError
	Class DTDParseError
	Class DTDValidateError
	Class DocumentInvalid
	Class ETCompatXMLParser
	Class ETXPath
	Class ElementBase
	Class ElementClassLookup
	Class ElementDefaultClassLookup
	Class ElementNamespaceClassLookup
	Class EntityBase
	Class Error
	Class ErrorDomains
	Class ErrorLevels
	Class ErrorTypes
	Class FallbackElementClassLookup
	Class HTMLParser
	Class LxmlError
	Class LxmlRegistryError
	Class LxmlSyntaxError
	Class NamespaceRegistryError
	Class PIBase
	Class ParseError
	Class ParserBasedElementClassLookup
	Class ParserError
	Class PyErrorLog
	Class PythonElementClassLookup
	Class QName
	Class RelaxNG
	Class RelaxNGError
	Class RelaxNGErrorTypes
	Class RelaxNGParseError
	Class RelaxNGValidateError
	Class Resolver
	Class Schematron
	Class SchematronError
	Class SchematronParseError
	Class SchematronValidateError
	Class SerialisationError
	Class TreeBuilder
	Class XInclude
	Class XIncludeError
	Class XMLParser
	Class XMLSchema
	Class XMLSchemaError
	Class XMLSchemaParseError
	Class XMLSchemaValidateError
	Class XMLSyntaxError
	Class ETCompatXMLParser
	Class XPath
	Class XPathDocumentEvaluator
	Class XPathError
	Class XPathEvalError
	Class XPathFunctionError
	Class XPathResultError
	Class XPathSyntaxError
	Class XSLT
	Class XSLTAccessControl
	Class XSLTApplyError
	Class XSLTError
	Class XSLTExtension
	Class XSLTExtensionError
	Class XSLTParseError
	Class XSLTSaveError
	Class iterparse
	Class iterwalk

	Package lxml.html
	Modules
	Functions
	Variables

	Module lxml.html.ElementSoup
	Functions

	Module lxml.html.builder
	Functions
	Variables

	Module lxml.html.clean
	Functions
	Variables
	Class Cleaner

	Module lxml.html.defs
	Variables

	Module lxml.html.diff
	Functions

	Module lxml.html.formfill
	Functions
	Class FormNotFound
	Class DefaultErrorCreator

	Module lxml.html.html5parser
	Functions
	Variables
	Class HTMLParser
	Class XHTMLParser

	Module lxml.html.soupparser
	Functions

	Module lxml.html.usedoctest
	Package lxml.includes
	Variables

	Package lxml.isoschematron
	Functions
	Variables
	Class Schematron

	Module lxml.objectify
	Functions
	Variables
	Class BoolElement
	Class ElementMaker
	Class FloatElement
	Class IntElement
	Class LongElement
	Class NoneElement
	Class NumberElement
	Class ObjectPath
	Class ObjectifiedDataElement
	Class ObjectifiedElement
	Class ObjectifyElementClassLookup
	Class PyType
	Class StringElement

	Module lxml.pyclasslookup
	Variables

	Module lxml.sax
	Functions
	Variables
	Class SaxError
	Class ElementTreeContentHandler
	Class ElementTreeProducer

	Module lxml.usedoctest

